Test Methods

<table>
<thead>
<tr>
<th>Test Methods</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foaming Characteristics of Lubricating Oils ASTM D892, D6092; IP 146; DIN 51566; FTM 791-3211, 791-3213</td>
<td>108-110</td>
</tr>
<tr>
<td>Water Separability of Petroleum Oils and Synthetic Fluids ASTM D1401, D6074, D6158; ISO 6614; DIN 51599; FTM 791-3201</td>
<td>110</td>
</tr>
<tr>
<td>Demulsibility Characteristics of Lubricating Oils ASTM D2711; DIN 51353</td>
<td>112</td>
</tr>
<tr>
<td>Gas Bubble Separation Time of Petroleum Oils ASTM D3427; IP 313; DIN 51381</td>
<td>113</td>
</tr>
<tr>
<td>Oxidation Stability of Steam Turbine Oils by Rotating Bomb ASTM D2112, D2272, D4742; IP 229</td>
<td>114-118</td>
</tr>
<tr>
<td>Oxidation Stability of Inhibited Mineral Insulating Oil by Rotating Bomb ASTM D2112, D2272; IP 229</td>
<td>114-118</td>
</tr>
<tr>
<td>Oxidation Stability of Gasoline Automotive Engine Oils by Thin-Film Oxidation Uptake (TFOUT) ASTM D4742</td>
<td>114-118</td>
</tr>
<tr>
<td>Oxidation Characteristics of Inhibited Mineral Oils ASTM D943, D2274, D2240, D2893, D4310, D4636, D5968, D6158; DIN 51586, 51587, 51394; FTM 791-5307; 791-5308</td>
<td>119-122</td>
</tr>
<tr>
<td>Determination of the Sludging Tendencies of Inhibited Mineral Oils ASTM D4310</td>
<td>119-122</td>
</tr>
<tr>
<td>Oxidation Stability of Distillate Fuel Oil (Accelerated Method) ASTM D2274</td>
<td>119-122</td>
</tr>
<tr>
<td>Oxidation Characteristics of Extreme Pressure Lubricating Oils ASTM D2893</td>
<td>119-122</td>
</tr>
<tr>
<td>Oxidation Stability of Mineral Insulating Oils ASTM D2440</td>
<td>123</td>
</tr>
<tr>
<td>Corrosiveness and Oxidation Stability of Hydraulic Oils, Aircraft Turbine Engine Lubricants, and Other Highly Refined Oils ASTM D4636, D5968; FTM 791-5307, 791-5308; IHC BT-10; DIN 51394</td>
<td>124-125</td>
</tr>
<tr>
<td>Oxidation Stability of Straight Mineral Oil IP 306</td>
<td>126</td>
</tr>
<tr>
<td>Oxidation Stability of Mineral Insulating Oil IP 307</td>
<td>126</td>
</tr>
</tbody>
</table>

For information on additional test methods for Lubricating Oils:
- Evaporation Loss of Lubricating Greases and Oils
 - please refer to pages 148-149
- Estimating Apparent Vapor Pressures and Molecular Weights of Lubricating Oils
 - please refer to pages 92-94
- Please refer to the Viscosity, Flash Point and General Tests Sections
- Additional test methods are available upon request

For information on additional test methods for Lubricating Oils, please refer to pages 148-149.
Test Method
Foaming of lubricating oils in applications involving turbulence, high speed gearing or high volume pumping can cause inadequate lubrication, cavitation, overflow and premature oxidation. The sample is blown with a controlled volume of air at different specified temperatures, including a newer high temperature test at 150°C. The resultant foam is measured at the end of each aeration period and at different intervals afterward. In the high temperature test, the amount of time required for the foam to collapse to “0” after the aeration period is also measured.

Foaming Characteristics Test Baths
- Dual twin models for standard foaming characteristics tests
- High temperature liquid bath for ‘Sequence IV’ tests
- Automatic time sequence models for both tests
- Custom configurations for specialized applications

Dual Twin Foaming Characteristics Test Apparatus—Performs two tests at 75°F (24°C) and two tests at 200°F (93.5°C). Consists of two 12x18" (30.5x45.7cm) constant temperature baths with 1000mL test cylinders, certified diffusers, air delivery tubes, and flowmeters (94mL/min.) for each sample. Baths are equipped with microprocessor temperature controls, copper immersion heaters and 1/20hp circulation stirrers to maintain temperature uniformity of ±1°F (±0.5°C). Microprocessor PID control provides quick temperature stabilization without overshoot and the bath is protected by an overtemperature control circuit that interrupts power should bath temperature exceed a programmed cut-off point. Dual LED displays provide actual and setpoint temperature values in °C/°F format. Test cylinders are held securely in place by quick-locking cams in the bath cover assembly. A separate stainless steel support rack is provided to hold the test cylinders after removal from the bath. Cold bath (24°C) has built-in coils for circulating exit air from the high temperature test cylinders prior to passing to a volume meter, and a separate coil for circulating cooling water or refrigerant when the ambient temperature exceeds the test temperature. Supplied with rubber stoppers and glass air outlet tubes for each cylinder. Bath controls are enclosed in a finished steel base with chemical resistant polyurethane enamel finish. Communications software as seen on page 110 (RS232, etc.), ramp-to-set and other enhanced features are available as extra cost options. Contact your Koehler representative for information.

FTM 791-3213 Aircraft Lubricants Test—Employs more severe conditions—smaller sample, increased air flow, longer aeration period—to test the foaming characteristics of aircraft-turbine lubricants. All models are available on special order for FTM 791-3213 testing. Please call or write for specifications and ordering information.

Specifications
Conforms to the specifications of:
ASTM D892; IP 146; DIN 51566;
FTM 791-3211, 791-3213*; NF T 60-129

Included Accessories
Test Cylinders, 1000mL (4)
Diffuser Stones, calibrated and certified (4)
Air Delivery Tube Assemblies (4)
Air Outlet Tubes (4)
Rubber Stoppers (4)
Bath Jars (2)
Support Rack (1)

*Requires modifications to standard equipment.

This equipment is available with a digital-indicating mass flow controller in place of the standard flowmeter. Please call or write for specifications and/or ordering information.

FTM 791-3211, 791-3213*; NF T 60-129

Included Accessories
Test Cylinders, 1000mL (2)
Diffuser Stones, calibrated and certified (2)
Air Delivery Tube Assemblies (2)
Air Outlet Tube (2)

Built-in Overtemperature Cut-off Protection

High Temperature ‘Sequence IV’ Liquid Foam Test Bath—For two tests at 150°C with a flow rate of 200mL/min. in accordance with ASTM D6082 specifications. Consists of a constant temperature bath with 1000mL test cylinders, certified diffusers, air delivery tubes and flowmeters. Microprocessor PID control provides quick temperature stabilization without overshoot and the bath is protected by an overtemperature control circuit that interrupts power should bath temperature exceed a programmed cut-off point. Dual LED displays provide actual and setpoint temperature values in °C/°F format. Quick response copper immersion heaters provide efficient high temperature operation, and a stirrer unit provides complete circulation for temperature uniformity of better than ±1°F (±0.5°C). Locking cams hold the test cylinders in a vertical position, and a separate rack is provided to hold the cylinders after removal from the bath. For operator safety, an acrylic heat shield surrounds the Pyrex™ bath jar. Communications software (RS232, etc.), ramp-to-set and other enhanced features are available as extra cost options. Contact your Koehler representative for information.

Specifications
Conforms to the specifications of: ASTM D6082

Temperature Control:
- Digital Setpoint and Displays °C/°F switchable
- Built-in Overtemperature Cut-off Protection

Included Accessories
Test Cylinders, 1000mL (2)
Diffuser Stones, calibrated and certified (2)
Air Delivery Tube Assemblies (2)
Air Outlet Tube (2)

Bath Jar (1)
Support Rack (1)
Rubber Stoppers (2)
Foaming Characteristics of Lubricating Oils

Dual-Twin Foaming Characteristics Test Apparatus

- For four tests in accordance with control ASTM D6082 and ASTM D892 specifications. Heated liquid bath features digital temperature control and an operating range to 150°C with four flowmeters to maintain the required flow rate of 94 and 200mL/min to the air diffusers. Requires the use of an external chiller to perform the Sequence I and III tests at 24°C.

Specifications

- Conforms to the specifications of: ASTM D892, D6082; IP 146; DIN 51566; FTM 791-3211; NF T 60-129
- Temperature Control: Digital Setpoint and Displays °C/°F switchable
- Built-in Overtemperature Cut-off Protection

Included Accessories

- Test Cylinders, 1000mL (4)
- Diffuser Stones, calibrated and certified (4)
- Air Delivery Tube Assemblies (4)
- Air Outlet Tubes (4)
- Rubber Stoppers (4)
- Bath Jars (2)
- Support Rack (1)

Accessories and Additional Ordering Information

For a complete listing of accessories and information on ordering a complete package for ASTM D892 and/or D6082 testing, please turn to page 110.

Ordering Information

<table>
<thead>
<tr>
<th>Model</th>
<th>Catalog No.</th>
<th>Electrical Requirements</th>
<th>Bath Temperature</th>
<th>Air Flow Rate</th>
<th>Bath Capacity</th>
<th>Dimensions</th>
<th>Shipping Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual-Twin</td>
<td>K43002</td>
<td>115V/50/60Hz 15.6A</td>
<td>24°C (75°F)</td>
<td>94mL/min</td>
<td>9 gal (38.5L) each bath</td>
<td>32 1⁄4x15x31 1⁄4 (82x38x79.4)</td>
<td>217 lbs (98.4kg) Dimensions: 29.6 Cu. ft.</td>
</tr>
<tr>
<td></td>
<td>K43092</td>
<td>220-240V/50/60Hz 8.1A</td>
<td>and 93.5°C (200°F)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automatic Time</td>
<td>K43003</td>
<td>115V/50/60Hz 16A</td>
<td>(Operator variable)</td>
<td>200mL/min</td>
<td>9 gal (38.5L) each bath</td>
<td>32 1⁄4x15x31 1⁄4 (82x38x79.4)</td>
<td>227 lbs (103kg) Dimensions: 33 Cu. ft.</td>
</tr>
<tr>
<td>Sequence IV</td>
<td>K43093</td>
<td>220-240V/50/60Hz 8A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid</td>
<td>K43041</td>
<td>115V/50/60Hz 14A</td>
<td>150°C (302°F)</td>
<td>94mL/min and 200mL/min</td>
<td>9 gal (38.5L) each bath</td>
<td>32 1⁄4x15x31 1⁄4 (82x38x79.4)</td>
<td>89 lbs (40.4kg) Dimensions: 16.3 Cu. ft.</td>
</tr>
<tr>
<td></td>
<td>K43049</td>
<td>220-240V/50/60Hz 7A</td>
<td>(Operator variable)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Test apparatus for ASTM D892 Sequence I, II and III

<table>
<thead>
<tr>
<th>Catalog No.</th>
<th>Order Qty</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K43002</td>
<td></td>
<td>Dual Twin Foam Test Apparatus (or K43003 Automatic Time Sequence Model)</td>
</tr>
<tr>
<td>387-115-001</td>
<td>1</td>
<td>Air Pump</td>
</tr>
<tr>
<td>K43025</td>
<td>1</td>
<td>Diffuser Stone Test Apparatus</td>
</tr>
<tr>
<td>250-000-12F</td>
<td>2</td>
<td>ASTM 12F Thermometer (or 250-000-12C ASTM 12C Thermometer)</td>
</tr>
<tr>
<td>K43026</td>
<td>1</td>
<td>Wet Test Gas Meter (not required for Alternative Procedure)</td>
</tr>
<tr>
<td>332-005-005</td>
<td>1</td>
<td>Drying Tower</td>
</tr>
<tr>
<td>K23425</td>
<td>1</td>
<td>Acrylic Heat Shield (optional)</td>
</tr>
</tbody>
</table>

Test apparatus for ASTM D6082 Sequence IV

<table>
<thead>
<tr>
<th>Catalog No.</th>
<th>Order Qty</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K43041</td>
<td>1</td>
<td>Sequence IV Foam Test Bath</td>
</tr>
<tr>
<td>K43025</td>
<td>1</td>
<td>Diffuser Stone Test Apparatus</td>
</tr>
<tr>
<td>K43026</td>
<td>1</td>
<td>Wet Test Gas Meter</td>
</tr>
<tr>
<td>332-005-005</td>
<td>1</td>
<td>Drying Tower</td>
</tr>
<tr>
<td>K23425</td>
<td>1</td>
<td>Acrylic Heat Shield (optional)</td>
</tr>
<tr>
<td>387-115-001</td>
<td>1</td>
<td>Air Pump</td>
</tr>
<tr>
<td>250-000-41C</td>
<td>1</td>
<td>ASTM 41C Thermometer</td>
</tr>
</tbody>
</table>

Test apparatus for ASTM D892 and D6082

<table>
<thead>
<tr>
<th>Catalog No.</th>
<th>Order Qty</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K43005</td>
<td>1</td>
<td>D892 and D6082 Dual Twin Foam Test Apparatus</td>
</tr>
<tr>
<td>K43025</td>
<td>1</td>
<td>Diffuser Stone Test Apparatus</td>
</tr>
<tr>
<td>K43026</td>
<td>1</td>
<td>Wet Test Gas Meter</td>
</tr>
<tr>
<td>332-005-005</td>
<td>1</td>
<td>Drying Tower</td>
</tr>
<tr>
<td>K23425</td>
<td>1</td>
<td>Acrylic Heat Shield (optional)</td>
</tr>
<tr>
<td>387-115-001</td>
<td>1</td>
<td>Air Pump</td>
</tr>
<tr>
<td>250-000-12F</td>
<td>2</td>
<td>ASTM 12F Thermometer (or 250-000-12C ASTM 12C Thermometer)</td>
</tr>
<tr>
<td>250-000-41C</td>
<td>2</td>
<td>ASTM 41C Thermometer</td>
</tr>
</tbody>
</table>

Accessories

- **Catalog No.**
 - 387-115-001 Air Pump, oil-less. Delivers 100% oil-free air. 115V 50/60Hz
 - 387-230-001 Air Pump, oil-less. 220-240V 50/60Hz
 - K43026 Wet Test Gas Meter
 - K33031 Refrigerated Recirculator
 - 250-000-12F ASTM 12F Thermometer. Range: -5 to +215°F
 - 250-000-12C ASTM 12C Thermometer. Range: -20 to +110°C
 - 250-000-41C ASTM 41C Thermometer. Range: 98 to 152°C
- **K23425** Acrylic Heat Shield, with base
- **344-100-01C** Certified Diffuser Stone. Calibrated and certified for compliance with ASTM specifications for pore diameter and permeability
- **344-100-001** Diffuser Stone, non-calibrated
- **344-005-001** Stainless Steel ‘Mott’ Diffuser
- **344-005-01C** Stainless Steel ‘Mott’ Diffuser Certified
- **K43012** Test Cylinder Replacement 1000mL cylinder. Includes retaining ring.

For NIST traceable certified thermometers, please refer to the ASTM Thermometers sections on pages 184 through 191.
Water Separability of Petroleum Oils and Synthetic Fluids

Test Method
The ability of a lubricating oil to separate from water and resist emulsification is an important performance characteristic for applications involving water contamination and turbulence. Water separability is determined by stirring equal volumes of water and sample together at a controlled temperature to form an emulsion and observing the time required for separation of the emulsion to occur. This method is suitable for petroleum oils and synthetic fluids.

Water Separability Tester
- Tests emulsion characteristics of lubricating oils
- Seven sample capacity
- Movable digital stirrer with microprocessor control incorporates advanced features for flexibility and ease of operation
- Clear, illuminated heating bath provides excellent visibility
- Microprocessor temperature control with digital display and built-in protection against overtemperature and low liquid level hazards
- Conforms to ASTM, ISO and related standards for water separability testing
- Optional sensor for direct measurement of sample temperature
- With built-in drain for convenient draining of bath medium

Seven-sample Water Separability Tester provides full visibility and microprocessor control of all functions for simplified, accurate testing of up to seven samples at a time. Use for specification of new oils and monitoring of in-service petroleum oils and synthetic fluids.

Seven position heating bath—A full visibility bath immerses seven 100mL cylinders at the proper depth per ASTM and ISO specifications. Sample cylinders are held securely in place by stainless steel supports inside the bath. A microprocessor based heater controls bath operating controls bath fluid temperature with greater than ±1°C accuracy and stability throughout the operating range of 25°C to 84°C. Large LED readouts display setpoint and actual temperatures in Celsius and Fahrenheit scale at the operator’s option. For most samples, ASTM/ISO sample temperatures of 54°C and 82°C are attained within 10 minutes after placement of the test cylinders into the stabilized bath. Clear polycarbonate tank has backlighting for excellent visibility when viewing emulsion separations in the test cylinders. Cut-off circuits for low water level and over-temperature conditions provide protection in the event of equipment malfunction. Easy removal of top plate for filling or cleaning the bath. Polycarbonate jar is encased in a Polyester-Epoxy finished steel housing with a protective distortion-free viewing window and a solid foundation.

Microprocessor sample stirrer—To avoid sample movement, the sample stirrer housing pivots to each test position in the bath and locks securely in place at the required position in relation to the 100mL sample cylinder. The digital stirrer offers complete flexibility for test duration and stirring speed at the push of a button. Operating speed and count down time are prominently displayed on a large backlit LCD panel. A wide operating range of 0-2000rpm permits in-house customized testing with ±1rpm accuracy, and the operator may select a stirring speed of up to 99.99 minutes. At the end of the selected interval, the stirrer automatically shuts off and alerts the operator with audible and visual signals that the settling period has commenced. For added convenience, all test parameters are stored in memory and repeated in subsequent tests until they are changed by the operator. Engaging the stirrer mechanism is visible to the operator and housed in a clear tube for added safety.

Specifications
Conforms to the specifications of: ASTM D1401, D6074, D6158; ISO 6614; DIN 51599; FTM 791-3201; NF T 60-125
Stirrer Range: 0-2000rpm
Accuracy: ±1.0rpm
Drive: 1/10hp (75W), high torque
Bath Temperature Range: 25°C to 84°C
Control Stability: ±0.05°C
Capacity: seven (7) 100mL graduated cylinders
Construction: Clear polycarbonate tank 10”x11.25”x9.5” (25.5x28x24cm)
Medium: Water or white technical oil
Medium Capacity: 15.15L (4 gal)
Electrical Requirements:
115V, 50/60Hz, Single Phase, 12A
220-240V 50/60 Hz, Single Phase, 12A

Dimensions
Lxwxh, in.(cm)
20.75x15.25x29.5 (52.7x38.75x74.9)

Included Accessories
Seven 100mL Cylinders

Software compatible, inquire with Koehler Customer Service.

<table>
<thead>
<tr>
<th>Catalog No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K39400</td>
<td>Water Separability Tester, 115V 60Hz</td>
</tr>
<tr>
<td>K39495</td>
<td>Water Separability Tester, 230V 50Hz</td>
</tr>
<tr>
<td>K39496</td>
<td>Water Separability Tester, 230V 60Hz</td>
</tr>
</tbody>
</table>

Accessories
- 332-002-018 Cylinder 100mL, graduated from 5 to 100mL with 1.0mL divisions
- 250-000-19F ASTM 19F Thermometer. Range: 120 to 134°F
- 250-000-19C ASTM 19C Thermometer. Range: 49 to 57°C
- 250-000-21F ASTM 21F Thermometer. Range: 174 to 188°F
- 250-000-21C ASTM 21C Thermometer. Range: 79 to 87°C
- K39252 PTFE Policeman
- K39251 Test Tube Rack

For NIST traceable certified thermometers, please refer to the ASTM Thermometers sections on pages 184 through 191.
Test Method
Tests the ability of medium to high viscosity oils to separate from water when water contamination and turbulence are encountered. The sample is stirred together with distilled water for 5 min. at constant temperature. After a specified settling period, the degree of separation is measured by volume and the percentage of water in oil is determined. For lighter oils and synthetic fluids, the ASTM D1401 Water Separability Test is used.

Demulsibility Apparatus
- Conforms to the specifications of ASTM D2711 and DIN 51353
- Variable stirrer speed
- Choice of digital or analog bath models

Stirrer—Complete stirrer assembly per Fig. 1 and 2 of ASTM D2711, including variable high speed drive motor, stainless steel propeller shaft, top, center and bottom bearings, and steel motor housing with positioning plate. Entire assembly mounts vertically in K39190/K39199 Constant Temperature Bath. Built-in tachometer disc allows for precise stirrer speed adjustment.

Constant Temperature Baths—Standard model holds two K39103 Stirrers and two K39120 Separatory Funnels in proper alignment for demulsibility characteristics testing. Stirrers mount securely on a stainless steel support plate having brackets for testing and drainage positions. Separate motor speed controls are provided for each stirrer. All wetted parts are constructed of stainless steel.

Microprocessor digital temperature control with dual LED displays for setpoint and actual temperatures and an illuminated bath interior with window for viewing sample cylinders. Digital LED speed control is provided for each stirrer.

Specifications
Conforms to the specifications of: ASTM D2711, DIN 51353
Capacity: Two (2) sample-water mixtures
Maximum Temperature: 212°F (100°C)
Temperature Control: Microprocessor digital control with LED display
Bath Medium: 9 gal (38.5L) water

Dimensions: Wx Dx H in (cm)
Shipping Information
15 1/4 x 15 x 37 (39 x 38 x 94)
Shipping Weight: 133 lbs (60.3kg)
Net Weight: 72 lbs (32.6kg)
Dimensions: 25.4 Cu. ft.

For NIST traceable certified thermometers, please refer to the ASTM Thermometers sections on pages 184 through 191.

Software compatible, inquire with Koehler Customer Service.
Test Method
The ability of a turbine, hydraulic, or lubricating oil to separate entrained air is a key performance characteristic in applications where agitation causes a dispersion of air bubbles in the oil. To determine air release properties, the sample is heated to a specified test temperature and blown with compressed air. After the air flow is stopped, the time required for the air entrained in the oil to reduce in volume to 0.2% is the air bubble separation time.

Air Release Value Apparatus
- Conforms to ASTM D3427, IP 313 and related specifications
- High accuracy temperature control with digital setpoint and display
- Digital control panel leads user from start to finish of test operation
- Automatic calculation of final sample density for determination of air release value
- Redundant overtemperature protection circuitry assures safe operation

The Koehler Air Release Value Apparatus consists of a test vessel and air flow control equipment for delivering heated air at the specified flow rate to a lubricating oil sample maintained at constant temperature. Microprocessor-based control panel guides user from start to finish of test operation and provides density calculation and timing operation for measuring the air release value of the test sample. The system includes drying oven for warming test oil at temperatures of up to 100°C; circulating bath with digital temperature controller and air bath for sinker; non-pulsating air pump; compressed air heater with digital temperature controller, overtemperature and overpressure protection circuitry; pressure gauge; thermometer. Optional Windows® software automatically measures the time for air release. Jacketed sample tube with air inlet and outlet tubes and baffle plate is ordered separately.

Specifications
Conforms to the specifications of:
ASTM D3427; IP 313; DIN 51381;
NF E 48-614
Temperature Range: ambient to 75°C (167°F)
Electrical Requirements:
115V 60Hz, 3.0A
230V 50Hz, 1.5A
230V 60Hz, 1.5A

Dimensions lwxh, in.(cm)
24x28x38½ (61x71x97)
(Air Release Value Apparatus only)
Net Weight for complete system:
225 lbs (103kg)

Included Accessories
- ASTM 12C Thermometer
- Sinkers, 5mL and 10mL
- Drying oven
- Pressure gauge
- Circulating Bath
- Air Bath for Sinker
- Balance
- Platinum Wire

Shipping Information
Shipping Weight for complete system:
300 lbs (136kg)
Dimensions: 50.7 Cu. ft.

Ordering Information

<table>
<thead>
<tr>
<th>Catalog No.</th>
<th>Description</th>
<th>Order Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>K88500</td>
<td>Air Release Value Apparatus, 115V 60Hz</td>
<td>1</td>
</tr>
<tr>
<td>K88501</td>
<td>Air Release Value Apparatus, 230V 50Hz</td>
<td>1</td>
</tr>
<tr>
<td>K88502</td>
<td>Air Release Value Apparatus, 230V 60Hz</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Accessories</th>
<th>Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>K88500-1</td>
<td>Jacketed Test Vessel</td>
</tr>
</tbody>
</table>
Oxidation Stability – RPVOT & TFOUT

Oxidation Stability of Steam Turbine Oils by Rotating Pressure Vessel (Bomb)
Oxidation Stability of Inhibited Mineral Insulating Oil by Rotating Pressure Vessel (Bomb)
Oxidation Stability of Gasoline Automotive Engine Oils by Thin Film Oxidation Uptake (TFOUT)

Test Method
The RPVOT (RBOT) procedure employs severe oxidation conditions to rapidly determine oxidation stability. Suitable for both new and in-service oils, the RPVOT (RBOT) method is applicable to many types of petroleum oils. The sample is oxidized in the presence of water and a copper catalyst in a stainless steel pressure vessel under an initial pressure of 90psi (620kPa). Pressure inside the vessel is recorded electronically or mechanically while the vessel is rotated at 100rpm at constant temperature, and the amount of time required for a specified drop in pressure is the oxidation stability of the sample. A variation of the RPVOT (RBOT) method is the “Thin Film Oxidation Uptake Test” (TFOUT) for gasoline automotive engine oils.

RPVOT (RBOT) Test Apparatus
• 2, 3 and 4-unit systems
• Oxidata™ Pressure Measurement System
• Conforms to ASTM D2112, D2272 and IP 229 specifications for RPVOT (RBOT) testing
• Conforms to ASTM D4742 specifications for TFOUT testing

For product specifications and ordering information:
Oxidation Pressure Vessels Page 114
Oxidation Baths Page 116
Beakers and Accessories Page 117
Catalysts Page 117
Pressure Recorder Page 117
Oxidata™ Pressure Measurement System Page 115
Complete Systems, 2, 3 and 4-Unit Page 118

Oxidation Pressure Vessel
• Polished stainless steel construction
• Can be converted for use in the Thin Film Oxidation Uptake Test (TFOUT)

Consists of pressure vessel body, cap and stem with inlet needle valve in accordance with ASTM specifications. Vessel holds one borosilicate glass sample container between two PTFE discs. Closure ring tightens by hand to seal cap to pressure vessel body. Vessel connects to pressure recorder or rotary transducer and rotates on magnetic carriage in RBOT bath. Withstands working pressure of 500psi (3450kPa) per ASTM specifications. Stainless steel construction ensures proper rate of heat transfer. Closure ring is constructed of chrome plated steel. Includes PTFE fluorocarbon wear disc and sample container cover disc.

Oxidata™ Pressure Measurement Systems
• Electronic pressure measurement systems exclusively designed for RPVOT (RBOT), TFOUT and other ASTM oxidation test methods
• Powerful Oxidata™ software for Windows® and Windows 95® environments
• Monitors up to twelve pressure and four temperature channels
• Can be installed to most manufacturer’s RPVOT(RBOT)/TFOUT test apparatus

Complete electronic measurement systems for plotting pressure versus time and temperature in RPVOT (RBOT) and TFOUT testing. Each system includes transducers, bomb couplings, RTD probe assembly, multiplexer, data acquisition card, software, and mounting and connecting hardware. Systems are available in two, three and four pressure vessel configurations, and additional channels can be added for up to a total of twelve pressure and four temperature channels.

Koehler pressure measurement systems for RPVOT (RBOT) and TFOUT feature Oxidata™, a high accuracy pressure measurement software package designed exclusively for ASTM oxidation test methods. Designed to run in a Windows® or Windows 95® environment, Oxidata™ monitors up to twelve samples simultaneously, with graphical or tabular display of results. Each channel can be independently configured for any of the applicable ASTM standard test methods without compromising the independence or accuracy of the other channels. Independent start and stop times and user programmable end points add even greater flexibility.

The software plots your data on screen on line, real time, and automatically saves your data on disk or to the hard drive during the test to prevent loss of valuable data. Multiple display options include the ability to view the status of all twelve pressure channels on screen simultaneously and then click on any one channel for a graph display; or to view four channels in graphical format simultaneously. Powerful program features allow you to change axes, have colored plot lines and zoom in on a specific plot sector to view data in greater detail.

Ordering Information

<table>
<thead>
<tr>
<th>Catalog No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K70000</td>
<td>Oxidation Pressure Vessel</td>
</tr>
<tr>
<td>K70092</td>
<td>Aluminum Insert</td>
</tr>
</tbody>
</table>

Converts standard K70000 Oxidation Pressure Vessel for use in the TFOUT method.
Oxidation Stability – RPVOT & TFOUT

Oxidata™ Features and Specifications

- On-line, real-time monitoring of up to twelve samples simultaneously - results plot directly to the screen for instant monitoring or printout of results
- Menu options for RPVOT (RBOT) or TFOUT testing, as well as for other ASTM fuel and lubricant oxidation tests
- Programmable automatic end-point detection with graphical and tabular representation
- Each channel can be configured and operated independently with different start/stop times and different ASTM test methods
- Zoom in feature allows for magnification of any plot sector on any channel for a more detailed study
- Monitors and reports temperatures of as many as four baths simultaneously using accessory RTD’s, and calculates and displays average temperature for each bath. Exports data to spreadsheet programs such as Microsoft Excel®, Lotus 1-2-3®, etc.
- Temperature and pressure calibration capability
- Data is saved directly to the hard drive during testing to prevent loss of valuable data
- Operates in Windows® 2000 or higher
- Simple upgrade from existing Koehler data acquisition systems

Included Accessories (for the pressure measurement systems)

- Rotary transducers (connects directly to bomb)
- Data acquisition box with USB interface
- Oxidata™ software
- Multiplexer
- RTD probe assembly (1)
- Mounting Bracket for bath
- Connecting cables and hardware

Computer Requirements

- Processor: Intel® Pentium II or similar (minimum)
- Memory (RAM): 256MB or higher
- Speed: 500 MHz or higher
- Windows® 2000 or higher
- Disk Space: 15 MB free space (minimum)
- Communications Port: One USB port
- Other Software: Microsoft® Excel (97 or above)
- One RS232 port for temperature controller (optional)

Ordering Information

The ordering information below is for installation to Koehler equipment. For other makes of equipment, a few basic hardware items may also be required - please contact your Koehler representative for assistance.

Catalog No.
RBOT/TFOUT Electronic Pressure Measurement System
K70502-XP Two-Unit System, 115V 60Hz
K70592-XP Two-Unit System, 220-240V 50/60Hz
K70503-XP Three-Unit System, 115V 60Hz
K70593-XP Three-Unit System, 220-240V 50/60Hz
K70504-XP Four-Unit System, 115V 60Hz
K70594-XP Four-Unit System, 220-240V 50/60Hz

Oxidata™ Retrofit Kits

To upgrade your existing Koehler electronic pressure measurement system to the Oxidata™ software, please refer to page 118.
Oxidation Stability – RPVOT & TFOUT

Oxidation Baths

- Two, three and four-pressure vessel models
- Conforming to ASTM requirements for RPVOT (RBOT) and TFOUT testing

Constant temperature bath rotates oxidation pressure vessels at 100rpm at an angle of 30° in accordance with ASTM specifications. Includes drive system and oil bath with electronic solid state temperature control. Meets ASTM requirements for heat transfer capability and temperature control precision.

A convenient carriage arrangement allows the oxidation vessels to be inserted quickly and securely in the drive system. A strong magnet holds the vessel in place while locating pins in the carriage engage the base of the vessel. PTFE guides support the pressure vessel stem for added stability. If the vessel becomes obstructed for any reason, the magnetic carriage releases it to prevent damage. A chain and sprocket drive system powered by a heavy duty capacitor start motor rotates the vessel carriages at 100rpm. Drive shafts ride on PTFE fluorocarbon bearings which provide extended service and are compatible with silicone heat transfer fluids and other types of bath oils.

Bath temperature is controlled within ASTM specified limits by an electronic solid state controller with °C/°F switchable digital setpoint and display. Overtemperature protection is provided by a built-in limit control that automatically interrupts power to the bath when bath liquid temperature exceeds 16.7°C (30°F) above the temperature setting or 177°C (350°F). Power must then be manually restored by the operator after checking the cause of the problem. Pressure vessel carriage vanes circulate the bath oil during testing to ensure temperature uniformity, and an auxiliary stirrer can be operated between tests to prevent sludging of non-silicone bath oils.

The bath interior is constructed of welded stainless steel and is fully insulated. A hinged section of the bath cover provides easy access to the vessel carriages. Vapor barriers in the cover close around the vessel stems to contain vapors from the hot bath medium. A chemical resistant polyurethane finish protects the bath exterior and control cabinet.

Specifications

Conforms to the specifications of: ASTM D2112, D2272, D4742; IP 229

- Capacity: 2, 3 or 4 oxidation pressure vessels
- Maximum Temperature: 200°C (392°F)
- Control Stability: ±0.02°C (±0.04°F)
- Heater Range:
 - 2 and 3-pressure vessel models: 0-2750W
 - 4-pressure vessel models: 0-3750W
- Recommended Bath Medium: high temperature silicone heat transfer fluid (355-001-002 or 355-001-004—page 8)
- Drive System: 100rpm positive drive transmission powered by a continuous duty ½hp ball bearing motor with built-in gear reducer

Ordering Information

<table>
<thead>
<tr>
<th>Catalog No</th>
<th>Capacity</th>
<th>Electrical Requirements</th>
<th>Bath Capacity, gal (L)</th>
<th>Dimensions, lxwxh.in.(cm)</th>
<th>Net Weight</th>
<th>Shipping Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>K70200</td>
<td>2 vessels</td>
<td>220-240V 60Hz, 17.17A</td>
<td>18 (68)</td>
<td>28x26x33 (71x66x84)</td>
<td>237 lbs (107.5kg)</td>
<td>356 lbs (161.5kg)</td>
</tr>
<tr>
<td>K70290</td>
<td>3 vessels</td>
<td>220-240V 50Hz, 17.17A</td>
<td>25 (95)</td>
<td>37x26x33 (94x66x84)</td>
<td>284 lbs (129kg)</td>
<td>416 lbs (188.7kg)</td>
</tr>
<tr>
<td>K70300</td>
<td>4 vessels</td>
<td>220-240V 60Hz, 21.5A</td>
<td>32 (121)</td>
<td>46x26x33 (117x66x84)</td>
<td>375 lbs (170kg)</td>
<td>542 lbs (245.9kg)</td>
</tr>
<tr>
<td>K70390</td>
<td></td>
<td>220-240V 50Hz, 21.5A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For NIST traceable certified thermometers, please refer to the ASTM Thermometers sections on pages 184 through 191.
Oxidation Stability – RPVOT & TFOUT

Oxidation Pressure Vessel Accessories
- Sample beakers for RBOT and TFOUT methods
- Oxygen charging accessories

<table>
<thead>
<tr>
<th>Catalog No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K70040</td>
<td>RPVOT (RBOT) Sample Beaker Borosilicate glass, 175mL Meets ASTM D2112, D2272 specifications</td>
</tr>
<tr>
<td>K70091</td>
<td>TFOUT Sample Container Borosilicate glass. Meets ASTM D4742 specifications</td>
</tr>
</tbody>
</table>

Oxygen Charging Accessories
- Charging Hose: 6 ft (1.8m), with connections
- Quick Connect Couplings, for charging hose
- Quick Connect Couplings, for oxidation pressure vessel
- Oxygen Pressure Regulator

Pressure Vessel Support Racks
- For convenient handling of oxidation pressure vessel during assembly and disassembly

<table>
<thead>
<tr>
<th>Catalog No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K70017</td>
<td>Pressure Vessel Support Rack, 2-Unit</td>
</tr>
<tr>
<td>K70011</td>
<td>Pressure Vessel Support Rack, 3-Unit</td>
</tr>
<tr>
<td>K70012</td>
<td>Pressure Vessel Support Rack, 4-Unit</td>
</tr>
</tbody>
</table>

Catalysts
- For Rotating Pressure Vessel Oxidation Test (RPVOT)
- For Thin Film Oxidation Uptake Test (TFOUT)

<table>
<thead>
<tr>
<th>Catalog No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K70030</td>
<td>Copper Catalyst Coil Prepared in accordance with ASTM specifications and packed in a sealed glass container with nitrogen atmosphere. Ready to use.</td>
</tr>
<tr>
<td>K70090</td>
<td>Copper Catalyst Wire 1.63mm electrolytic copper wire in 500 ft (152m) lengths.</td>
</tr>
<tr>
<td>K70002</td>
<td>Winding Mandrel Machined aluminum mandrel for winding copper wire into coils meeting ASTM specifications. Mounts on K70003/K70004 Drive Unit</td>
</tr>
<tr>
<td>K70003</td>
<td>Drive Unit for Winding Mandrel Slow speed gear motor mounted on a sturdy base. Facilitates coil winding procedure. 115V</td>
</tr>
<tr>
<td>K70004</td>
<td>Drive Unit for Winding Mandrel Similar to K70003 but for operation on 220-240V</td>
</tr>
</tbody>
</table>

Catalyst Package for TFOUT Method
- For simulating IIIE engine test. Includes 3 catalyst packages

<table>
<thead>
<tr>
<th>Catalog No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K70095</td>
<td>Catalyst Package B For simulating IIIE engine test. Includes 3 catalyst packages</td>
</tr>
</tbody>
</table>

Pressure Recorder
- Conforms to ASTM D2112, D2272, D4742 and IP 229 specifications
- Records pressure inside oxidation bomb on 24-hour charts. Range 0 to 200psi, accurate to within 2% of scale range, 24-hour spring wound chart movement. Housed in a finished metal case. Includes cartridge pen.

<table>
<thead>
<tr>
<th>Catalog No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K70010/24</td>
<td>Pressure Recorder, 24-hour</td>
</tr>
</tbody>
</table>

Accessories
- Replacement Cartridge Pen
- Recorder Chart, 24-hour Box of 60 charts

Oxygen Stand Assembly
- Oxidation Stand Assembly For K70400 & K70490

Oxidata™ pressure measurement equipment is now available for the RPVOT (RBOT) and TFOUT Methods. Please refer to page 115.
Oxidation – RPVOT & TFOUT

2 Unit RBOT System:
- K70200 Oxidation Bath (or K70290)
- K70000 Oxidation Pressure Vessel (2)
- K70502 Oxidata™ Pressure Measurement System (or K70592)
- K70002 Winding Mandrel
- K70003 Drive Unit (or K70004)
- K70017 Pressure Vessel Support Rack
- 250-001-37C IP 37C Bath Thermometer
- K70080 Charging Hose
- K70081 Quick Connect Coupling for charging hose
- K70083 Quick Connect Coupling for oxidation pressure vessel (2)
- K70013 Oxygen Pressure Regulator
- K70030 Copper Catalyst Coils
- K70090 Copper Catalyst Wire, 500 ft.
- K70040 Sample Container
- K70050 Silicone O-ring

3-Unit RBOT System:
- K70300 Oxidation Bath (or K70390)
- K70000 Oxidation Pressure Vessel (3)
- K70503 Oxidata™ Pressure Measurement System (or K70593)
- K70002 Winding Mandrel
- K70003 Drive Unit (or K70004)
- K70011 Pressure Vessel Support Rack
- 250-001-37C IP 37C Thermometer
- K70080 Charging Hose
- K70081 Quick Connect Coupling for charging hose
- K70083 Quick Connect Coupling for oxidation pressure vessel (3)
- K70013 Oxygen Pressure Regulator
- K70030 Copper Catalyst Coils
- K70090 Copper Catalyst Wire, 500 ft.
- K70040 Sample Container
- K70050 Silicone O-ring

4-Unit RBOT System:
- K70400 Oxidation Bath (or K70490)
- K70000 Oxidation Pressure Vessel (4)
- K70504 Oxidata™ Pressure Measurement System (or K70594)
- K70401 Oxidation Stand Assembly, 4-Unit RBOT
- K70002 Winding Mandrel
- K70003 Drive Unit (or K70004)
- K70012 Pressure Vessel Support Rack
- 250-001-37C IP 37C Thermometer
- K70080 Charging Hose
- K70081 Quick Connect Coupling for charging hose
- K70083 Quick Connect Coupling for oxidation pressure vessel (4)
- K70013 Oxygen Pressure Regulator
- K70030 Copper Catalyst Coil
- K70090 Copper Catalyst Wire, 500 ft.
- K70040 Sample Container
- K70050 Silicone O-ring

For TFOUT testing, make the following substitutions:
- K70091 Sample Beaker (replaces K70040)
- K70092 Aluminum Insert (2, 3 or 4)
- 250-000-100C ASTM 100C Thermometer (replaces 250-001-37C)

Oxidata™ Retrofit Kits
To upgrade existing DOS-based Koehler electronic pressure measurement systems to the Oxidata™ system. Kits include Oxidata™ software, data acquisition card, multiplexer board, RTD probe assembly and connecting cables. Does not include rotary transducers or bath mounting bracket.

For information on upgrading other makes of equipment to the Oxidata™ system, please contact your Koehler representative.

Ordering Information

<table>
<thead>
<tr>
<th>Catalog No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K70502RETO</td>
<td>2-Unit Oxidata™ Pressure Measurement System without Transducers, 115V 60Hz</td>
</tr>
<tr>
<td>K70592RETO</td>
<td>2-Unit Oxidata™ Pressure Measurement System without Transducers, 220-240V 50/60Hz</td>
</tr>
<tr>
<td>K70503RETO</td>
<td>3-Unit Oxidata™ Pressure Measurement System without Transducers, 115V 60Hz</td>
</tr>
<tr>
<td>K70593RETO</td>
<td>3-Unit Oxidata™ Pressure Measurement System without Transducers, 220-240V 50/60Hz</td>
</tr>
<tr>
<td>K70504RETO</td>
<td>4-Unit Oxidata™ Pressure Measurement System without Transducers, 220-240V 50/60Hz</td>
</tr>
</tbody>
</table>

Accessories

<table>
<thead>
<tr>
<th>Catalog No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K70500</td>
<td>Rotary Transducer</td>
</tr>
<tr>
<td></td>
<td>Includes electronic transducer and rotating stainless steel housing</td>
</tr>
<tr>
<td>K70519</td>
<td>RTD Kit, for monitoring the temperature of an additional bath</td>
</tr>
</tbody>
</table>

For NIST traceable certified thermometers, please refer to the ASTM Thermometers sections on pages 184 through 191.
Test Method
Various methods are available for testing the resistance to oxidation and/or the corrosiveness of lubricants, insulating oils, hydraulic oils and distillate fuel oils. The samples are subjected to a metered flow of air at elevated temperatures, sometimes in the presence of a metal catalyst. Each of the tests referenced on this page are also represented on other pages in this section of the catalog.

High Temperature Convertible Oxidation Bath
• Conforms to various ASTM, Federal and International Standards
• Removable racks hold different types of glassware for different tests
• Equipped with flowmeters or digital mass flow controls to measure and control the required flow rates
• Microprocessor digital temperature control

High temperature liquid bath for oxidation stability and corrosiveness tests at temperatures of up to 200°C. Available in different configurations for convertibility between several oxidation stability and corrosivity test methods including Cummins oxidation test. Removable rack/top plate assemblies remove and install with minimum effort to easily convert the bath between test methods. For most test methods, twelve sets of glassware can be accommodated in each rack assembly. Select flowmeters or digital mass flow control to maintain air flow at the required rates. Microprocessor PID control provides quick temperature stabilization without overshoot, and the bath is protected by an overtemperature control circuit that interrupts power should bath temperature exceed a programmed cut-off point. Dual LED displays provide actual and setpoint temperature values in °C/°F format. Communication software (RS232, etc.) ramp-to-set and other enhanced features are available as extra cost options. Contact your Koehler representative for information.

Specifications
Conforms to the specifications of*:
 ASTM D943, D2274, D2440, D2893, D4310, D4636, D5968, D6594;
 DIN 51394, 51586, 51587; FTM 791-5307, 791-5308; UOT**
 *with the appropriate glassware rack and flow control equipment installed –see ordering information.
 **Modified versions of this equipment are available for UOT test method.
Capacity: Twelve (12) sets of glassware. For ASTM D5968, FTM 791-5307, and FTM 791-5308, only ten (10) sets of glassware.
Temperature Range: Ambient to 200°C
Temperature Control Accuracy: 0.2°F (0.1°C)
Bath Medium: Silicone heat transfer fluid
Flow Rate: As specified for ASTM or applicable specifications
Electrical Requirements:
 115V 50/60 Hz, Single Phase, 27.3A
 220-240V 50/60Hz, Single Phase, 14.6A

Dimensions Ixwxh, in.(cm)
 Bath (without glassware): 25½x24x42(65x61x107)

Shipping Information (without glassware)
 Shipping Weight: 213 lbs (96.6kg)
 Dimensions: 29 Cu. ft.

Catalog No.
Please contact your Koehler representative for information on glassware racks and airflow control options prior to order placement.

K12230 High Temperature Convertible Oxidation Bath
Digital Flowmeter option is available for this unit.
K12239 High Temperature Convertible Oxidation Bath
Software compatible, inquire with Koehler Customer Service.

Ordering Information

K1223-R943 Sample Rack for D943, D2274, D2892 D4310 testing
K1223-R2440 Sample Rack for D2440 testing
K1223-R4636 Sample Rack for D4636, D5968 testing
K1223-AL Flowmeter Stand with Flowmeters for all ASTM methods listed above
K1223-3L Flowmeter Stand with Flowmeters for D943, D2274, D2440, D4310 testing (range 3 ±0.1 L/hr)
K1223-10L Flowmeter Stand with Flowmeters for D2893, D4636, D5968 testing (range to 10 ±0.5 L/hr)

To order glassware and other accessories please refer to the pages in this section of the catalog that correspond to the test methods that you will be following.
Oxidation Characteristics of Inhibited Mineral Oils
Sludging and Corrosion Tendencies of Inhibited Mineral Oils
Oxidation Stability of Distillate Fuel Oil (Accelerated Method)
Oxidation Characteristics of Extreme-Pressure Lubrication Oils

Test Method
Evaluates oxidation stability by subjecting the sample to a temperature of 95°C in the presence of oxygen or dry air. For inhibited mineral oils, the sample is reacted with oxygen in the presence of water and an iron-copper catalyst.

Oxidation Stability Apparatus
• Thirty and sixty-place liquid baths for high volume testing requirements
• Eight and twelve-place liquid baths for benchtop placement
• Twelve-place solid block bath
• Conforming to ASTM and related test method specifications
• Special baths for ASTM D2893 and AOCS CD12-57 tests

For product specifications and ordering information:
30 and 60-place Oxidation Baths - page 121
Solid-Block Oxidation Bath - page 121
Oxidation Cell Glassware and Accessories - page 122
Iron-Copper Catalyst and Thermometers - page 122

Eight and Twelve-Place Oxidation Baths
• Conforming to ASTM and related test method specifications
Constant temperature baths with solid state temperature control, calibrated flowmeters and condenser water manifold for oxidation stability tests on fuels and lubricants. Individual flowmeters and control valves for each oxidation cell deliver air flow at the rate of 3L/h. Condenser water manifold has individual control valves for each cell. Microprocessor PID control provides quick temperature stabilization without overshoot, and the bath is protected by a redundant overtemperature control circuit that interrupts power should bath temperature exceed a programmed cut-off point. Display provides actual setpoint temperature values in °C/°F format. Communications software (RS232, etc.), ramp-to-set and other enhanced features are available as extra cost options. Double-wall insulated baths are equipped with copper immersion heaters and a ¾ hp circulation stirrer. Stainless steel bath interior has a built-in support rack and overflow/drain to immerse the test cells at the required depth. Order oxidation cell glassware and accessories separately.

Specifications
Conforms to the specifications of:
ASTM D943, D2274, D2893*, D4310, D6158; AOCS CD12-57**
DIN 51586, 51587; ISO 4263, ISO 12205; NF M 07-047; NF T 60-150
Test Capacity: 8 or 12 oxidation cells
Temperature Range: ambient to 212°F (100°C)
Temperature Control Stability: ±0.2°F (±0.1°C)
Bath Medium: white technical oil
Bath Capacity:
8-place model: 10 gal (37.8L)
12-place model: 19 gal (71.9L)
Electrical Requirements:
8-place model: 115V 50/60Hz, Single Phase, 13.0A
220-240V 50/60Hz, Single Phase, 6.8A
12-place model: 115V 50/60Hz, Single Phase, 32.6A
220-240V 50/60Hz, Single Phase, 17.0A

Dimensions
8-place model: 17½x25x42 (44x64x107)
12-place model: 25½x24x42 (65x61x107)

Shipping Information:
Shipping Weight:
8-place model: 137 lbs (62.1kg)
12-place model: 213 lbs (96.6kg)
Dimensions:
8-place model: 29 Cu. ft.
12-place model: 29 Cu. ft.

Digital Flowmeter option is available for this unit. Software compatible, inquire with Koehler Customer Service.

Ordering Information
Catalog No.
K12200 Oxidation Bath, 8-Unit, 115V 50/60Hz
K12290 Oxidation Bath, 8-Unit, 220-240V 50/60Hz
K12212 Oxidation Bath, 12-Unit, 115V 50/60Hz
K12219 Oxidation Bath, 12-Unit, 220-240V 50/60Hz
*Modified versions of this equipment are available for ASTM D2893
**“Oxidation Characteristics of Extreme Pressure Lubricating Oils” and AOCS CD12-57 “Fat Stability-Active Oxygen Method.” Information will be furnished upon request.
30- and 60-Place Oxidation Baths

- Convenient operation and servicing of thirty or sixty test cells
- Complete bath temperature, water level, air flow and condenser water systems
- Constant temperature water baths for high volume oxidation stability applications. Provides temperature control, metered air flow and condenser water supply controls for as many as thirty or sixty cells in a single system, eliminating the need for multiple water and electrical feeds and oxygen supply tanks. Microprocessor PID control provides quick temperature stabilization without overshoot, and the bath is protected by a redundant overtemperature control circuit that interrupts power should bath temperature exceed a programmed cut-off point. Display provides actual setpoint temperature values in °C/°F format. Communications software (RS232, etc.), ramp-to-set and other enhanced features are available as extra cost options.
- A 6 or 12kW heat exchanger with heavy duty magnetic drive circulation pump provides rapid and uniform heat transfer throughout the bath. Bath liquid depth is automatically maintained within ASTM specified tolerances by an electronic water level control system. Two banks of individually controlled flowmeters maintain the required oxygen flow rate to each test cell, and condenser water control valves for each cell are mounted on manifolds along the sides of the bath. A centrally mounted trough collects condenser waste water for convenient disposal or recirculation through an external cooling device. Bath interior is constructed of heavy gauge welded stainless steel. All components are easily accessible for servicing if required. Supplied with a sturdy finished angle-iron frame for floor standing installation. Order oxidation cell glassware and accessories separately.

Specifications

Conforms to the specifications of:
- ASTM D943, D2274, D2893*, D4310, D6158; ISO 4263, 12205
- AOCS CD12-57**: DIN 51586, DIN 51587; NF M 07-047; NF T 60-150
- Temperature Control Stability: ±0.1°C (±0.2°F)
- Oxygen Flow Rate: 3L/h to each test cell, individually controlled
- Bath Capacity:
 - 30-place model: 60 gal (227L)
 - 60-place model: 114 gal (432L)
- Electrical Requirements:
 - 30-place model: 220-240V 50/60Hz, Single Phase, 28A
 - 60-place model: 220-240V 50/60Hz, Single Phase, 54A
 - Other electrical configurations are available upon request.

Dimensions

- 30-place model: 43x55x52 (109x140x132)
- 60-place model: 43x78x52 (109x198x132)

Shipping Information

- Net Weight: 892 lbs (404.6kg)
- Dimensions: 30-place model: 43x55x52 (109x140x132)

Ordering Information

<table>
<thead>
<tr>
<th>Catalog No.</th>
<th>Description</th>
<th>30-Place Oxidation Stability Bath, 220-240V 60Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>K12330</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K12339</td>
<td></td>
<td>30-Place Oxidation Stability Bath, 220-240V 50Hz</td>
</tr>
<tr>
<td>K12300</td>
<td></td>
<td>60-Place Oxidation Stability Bath, 220-240V 60Hz</td>
</tr>
<tr>
<td>K12395</td>
<td></td>
<td>60-Place Oxidation Stability Bath, 220-240V 50Hz</td>
</tr>
</tbody>
</table>

Photograph, thermometers, and additional accessories for oxidation stability testing appear on page 122.

*Modified versions of this equipment are available for ASTM D2893 “Oxidation Characteristics of Extreme Pressure Lubricating Oils” and AOCS CD12-57 “Fat Stability Active Oxygen Method.” Information will be furnished upon request.

Available option for 30- and 60-place Oxidation Baths—temperature/pressure recorder with built-in alarms for low pressure and over/under temperature. Please call or write for specifications and ordering information.

Software compatible, inquire with Koehler Customer Service.
Oxidation Cell Glassware and Accessories

Ordering Information

<table>
<thead>
<tr>
<th>Catalog No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K12281</td>
<td>Oxidation Cell Assembly for ASTM D943 and D4310 Includes oxidation cell, condenser, oxygen delivery tube, thermometer bracket, oil level indicator strip, syringe sampling tube, sampling tube holder, spacer, PTFE stopper and O-rings</td>
</tr>
<tr>
<td>K122-0-18</td>
<td>Oxygen Delivery Tube</td>
</tr>
<tr>
<td>K122-0-19</td>
<td>Oxidation Test Tube</td>
</tr>
<tr>
<td>K122-0-20</td>
<td>Condenser</td>
</tr>
<tr>
<td>K122-0-21</td>
<td>Thermometer Bracket</td>
</tr>
<tr>
<td>K122-0-22</td>
<td>Oil Level Indicator Strip</td>
</tr>
<tr>
<td>K122-0-23</td>
<td>Syringe Sampling Tube Holder</td>
</tr>
<tr>
<td>K122-0-27</td>
<td>PTFE Stopper</td>
</tr>
<tr>
<td>K122-0-28</td>
<td>Syringe Sampling Spacer</td>
</tr>
<tr>
<td>K122-0-30</td>
<td>Syringe Sampling Tube</td>
</tr>
<tr>
<td>AS568-009-V14</td>
<td>O-rings</td>
</tr>
</tbody>
</table>

For ASTM D2274, order one each K122-0-18 Oxygen Delivery Tube, K122-0-19 Oxidation Test Tube, and K122-0-20 Condenser for each cell.

Iron-Copper Catalyst

Ordering Information

<table>
<thead>
<tr>
<th>Catalog No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K12210</td>
<td>Catalyst Coil Low-metalloid steel wire and electrolytic copper wire wound in a double spiral conforming to ASTM specifications. Packed in a sealed glass tube with a nitrogen atmosphere. Ready for use.</td>
</tr>
<tr>
<td>K24000</td>
<td>Wire Coiling Mandrel Mounts on bench for winding steel and copper wire into catalyst coils meeting ASTM specifications.</td>
</tr>
<tr>
<td>K12250</td>
<td>Steel Wire Low metalloid steel wire, 0.0625” (1.59mm) diameter, for catalyst coils. Supplied in 1000 ft (304.8m) lengths.</td>
</tr>
<tr>
<td>K12260</td>
<td>Copper Wire Electrolytic copper wire, 0.064” (1.63mm) diameter, for catalyst coils. Supplied in 1000 ft (304.8m) lengths.</td>
</tr>
<tr>
<td>380-100-001</td>
<td>Silicone Carbide Paper Used to polish steel and copper wire prior to winding into catalyst coils. 100 grit.</td>
</tr>
</tbody>
</table>

Thermometers

Ordering Information

<table>
<thead>
<tr>
<th>Catalog No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>250-002-001</td>
<td>Oxidation Cell Thermometer Range: 80 to 100°C. For ASTM D943 and D4310.</td>
</tr>
<tr>
<td>250-000-40C</td>
<td>ASTM 40C Thermometer Range: 72 to 126°C. For constant temperature baths.</td>
</tr>
</tbody>
</table>

For NIST traceable certified thermometers, please refer to the ASTM Thermometers sections on pages 184 through 191.
Oxidation Stability of Mineral Insulating Oils

Test Method
Determines oxidation stability of mineral transformer oils by measuring the amount of sludge and acid formed under prescribed accelerated aging conditions.

Oxidation Stability Bath
- Conforms to ASTM D2440 specifications
- Microprocessor temperature control with digital display and overtemperature cut-off
- Six-sample testing capacity

Constant temperature oil bath for testing oxidation stability of mineral insulating oils. Immerses six oil receptacles at the required depth per ASTM specifications at 110°C ± 0.5°C, and controls oxygen flow to each sample at the rate of 1L/h ± 0.1L/h through six independent flowmeters mounted on a common manifold. Insulated double-wall stainless steel bath has microprocessor temperature control with °C/°F switchable digital setpoint and display. Operator and equipment are protected by an overtemperature control circuit which automatically interrupts power to the unit when bath temperature exceeds a programmed cut-off point. Communications software (RS232, etc.), ramp-to-set and other enhanced features are available as extra cost options. Contact your Koehler representative for information. Order bath thermometer drying tower and catalyst separately.

Specifications
Conforms to the specifications of:
- ASTM D2440
Capacity: Six samples
Temperature Range: ambient to 260°F (127°C)
Circulator: 1/20hp impeller
Bath Capacity/Medium: 2.5 gal (9.5L) white technical oil
Electrical Requirements:
 - 115V 50/60Hz, Single Phase, 8.1A
 - 220-240V 50/60Hz, Single Phase, 4.2A

Included Accessories
- Oil Receptacle and Head (6)

Dimensions
- Body: 14x15x22 (36x38x56)
- Weight: 31 lbs (14.1kg)

Shipping Information
- Shipping Weight: 61 lbs (27.7kg)
- Dimensions: 14.4 Cu. ft.

Ordering Information

<table>
<thead>
<tr>
<th>Catalog No.</th>
<th>Description</th>
<th>Order Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>K12100</td>
<td>Oxidation Stability Bath, 115V 50/60Hz</td>
<td>1</td>
</tr>
<tr>
<td>K12190</td>
<td>Oxidation Stability Bath, 220-240V 50/60Hz</td>
<td>1</td>
</tr>
<tr>
<td>K12130</td>
<td>Copper Catalyst Coils</td>
<td>1</td>
</tr>
<tr>
<td>332-005-010</td>
<td>Drying Tower</td>
<td>1</td>
</tr>
<tr>
<td>332-005-011</td>
<td>Glass Filter Crucible</td>
<td>1</td>
</tr>
<tr>
<td>250-000-95C</td>
<td>ASTM 95C Thermometer</td>
<td>1</td>
</tr>
<tr>
<td>355-001-001</td>
<td>White Technical Oil, 1 gal container</td>
<td>3</td>
</tr>
<tr>
<td>355-001-003</td>
<td>White Technical Oil, 5 gal container</td>
<td>1</td>
</tr>
</tbody>
</table>

For NIST traceable certified thermometers, please refer to the ASTM Thermometers sections on pages 184 through 191.

Software compatible, inquire with Koehler Customer Service.
Corrosiveness and Oxidation Stability of Hydraulics Oils, Aircraft Turbine Engine Lubricants, and Other Highly Refined Oils

Test Method
Evaluates the ability of a lubricant to resist oxidation and the formation of corrosive acid compounds by subjecting a sample to accelerated oxidation conditions in a catalytic environment. The sample is maintained at elevated temperature and subjected to a controlled air flow while in the presence of a series of test specimens made of metals commonly found in actual service conditions.

Corrosiveness and Oxidation Stability Test Apparatus
- Models for ASTM, Federal and IHC test methods
- Six-sample testing capability
- Solid aluminum block design
- Microprocessor temperature control with digital display and overtemperature protection

Constant temperature block baths for corrosivity and oxidation stability determinations on hydraulic oils, aircraft turbine lubricants, transmission fluids and other highly refined oils. Insulated aluminum block provides safe, efficient performance at operating temperatures of up to 750°F (399°C). Microprocessor temperature control has °C/°F switchable digital setpoint and display. Operator and equipment are protected by an overtemperature control circuit which automatically interrupts power to the unit should block temperature exceed a programmed cut-off point. Communications software (RS232, etc.), ramp-to-set and other enhanced features are available as extra cost options. Contact your Koehler representative for information.

Air flow is controlled at the specified rate by six individually adjustable flowmeters mounted on a common manifold. Includes inlet valve and outlet fitting for condenser water supply and support rack for glassware.

Specifications
Conforms to the specifications of:
- ASTM D4636, D5968, D6594; FTM 791-5307, 791-5308;
- IHC BT-10; DIN 51394

Capacity: 6 test cells
Temperature Range: 125 to 750°F (51.7 to 399°C)
Temperature Control Stability: ±1°F (±0.5°C)
Air Flow Rate:
- ASTM D4636/FTM 791-5307: 10L/h
- FTM 791-5308: 3L/h and 5L/h (dual range flowmeters)
- IHC BT-10: 3L/h (50mL/min.)

Electrical Requirements: 220-240V 50/60Hz, Single Phase, 15.9A

Dimensions (lxwxh, in./cm)
- 32½x14½x41½ (83x37x105)

Net Weight: 271 lbs (122.9kg)

Shipping Information
Shipping Weight: 375 lbs (170.1kg)
Dimensions: 18.5 Cu. ft.

Ordering Information

<table>
<thead>
<tr>
<th>Catalog No.</th>
<th>Order Qty</th>
<th>Corrosivity and Oxidation Stability Test Apparatus</th>
</tr>
</thead>
<tbody>
<tr>
<td>K35100</td>
<td>1</td>
<td>ASTM D4636, D5968 and FTM 791-5307 Model, 220-240V 50/60Hz</td>
</tr>
<tr>
<td>K35000</td>
<td>1</td>
<td>FTM 791-5308 Model, 220-240V 50/60Hz</td>
</tr>
<tr>
<td>K35300</td>
<td>1</td>
<td>IHC BT-10 Model, 220-240V 50/60Hz</td>
</tr>
</tbody>
</table>

Thermometers
- 250-000-08F: ASTM 8F Thermometer
 - Range: 30 to 760°F
- 250-000-08C: ASTM 8C Thermometer
 - Range: −2 to +400°C

For NIST traceable certified thermometers, please refer to the ASTM Thermometers sections on pages 184 through 191.
<table>
<thead>
<tr>
<th>Glassware, Test Specimens and Accessories</th>
<th>Metal Test Specimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalog No.</td>
<td>Order Qty</td>
</tr>
<tr>
<td>ASTM D4636, D5968, D6594 and FTM 791-5307</td>
<td></td>
</tr>
<tr>
<td>K351-0-1</td>
<td>Sample Tube</td>
</tr>
<tr>
<td>K351-0-2</td>
<td>Sample Tube Head</td>
</tr>
<tr>
<td>K351-0-3</td>
<td>Air Tube</td>
</tr>
<tr>
<td>K351-0-4</td>
<td>Thermocouple Tube</td>
</tr>
<tr>
<td>K351-0-5</td>
<td>Condenser, Allihn Type</td>
</tr>
<tr>
<td>K351-0-7</td>
<td>Spacer</td>
</tr>
<tr>
<td>K351-0-8</td>
<td>PTFE Adapter</td>
</tr>
<tr>
<td>K351-0-13</td>
<td>Oil Sampling Tube (for D5968 and FTM 791-5307)</td>
</tr>
<tr>
<td>K351-0-14</td>
<td>Specimen Hanger (for D6594)</td>
</tr>
<tr>
<td>K293-0-12</td>
<td>Thermocouple, Type J</td>
</tr>
<tr>
<td>K29310</td>
<td>Digital Thermometer</td>
</tr>
<tr>
<td></td>
<td>Microprocessor based digital thermocouple thermometer with ten-channel input.</td>
</tr>
<tr>
<td></td>
<td>Monitors Type J thermocouples from sample tubes.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>K35090</td>
<td>Test Panel Assembly Fixture</td>
</tr>
<tr>
<td></td>
<td>Holds square-shaped metal specimens for tying with cord (for FTM 791-5307 and FTM 791-5308)</td>
</tr>
<tr>
<td>K35095</td>
<td>Test Panel Assembly Fixture</td>
</tr>
<tr>
<td></td>
<td>Holds square-shaped metal specimens for tying with cord (for ASTM D5968)</td>
</tr>
<tr>
<td>FTM 791-5308</td>
<td></td>
</tr>
<tr>
<td>K350-0-23</td>
<td>Test Tube</td>
</tr>
<tr>
<td>K350-0-24</td>
<td>Air Tube</td>
</tr>
<tr>
<td>K350-0-25</td>
<td>Condenser</td>
</tr>
<tr>
<td>K35090</td>
<td>Test Panel Assembly Fixture</td>
</tr>
<tr>
<td></td>
<td>Holds square-shaped metal specimens for tying with cord.</td>
</tr>
<tr>
<td>IHC BT-10</td>
<td></td>
</tr>
<tr>
<td>K353-0-1</td>
<td>Test Cell</td>
</tr>
<tr>
<td>K353-0-2</td>
<td>Condenser</td>
</tr>
<tr>
<td>K353-0-3</td>
<td>Air Tube</td>
</tr>
<tr>
<td>K353-0-4</td>
<td>Ring Rod</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Oxidation Stability of Inhibited Mineral Turbine Oils
Oxidation Stability of Straight Mineral Oil
Oxidation Stability of Mineral Insulating Oil
Oxidation Stability of Inhibited Mineral Insulating Oils

Test Method
Oxidation stability is determined by exposing the sample to a measured oxygen flow at elevated temperature in the presence of metal catalysts.

Oxidation Stability Apparatus (Cigre Bath)
- Conforms to IP specifications
- Twelve-sample testing capability
- Microprocessor programmable high accuracy temperature control

Constant temperature aluminum block type bath for oxidation stability tests in accordance with the Institute of Petroleum (IP) testing methods. Accommodates twelve sets of oxidation and absorption tubes. Insulated block bath operates efficiently at temperatures of up to 200°C (392°F). Microprocessor PID control provides quick temperature stabilization without overshoot, and the bath is protected by an overtemperature control circuit that interrupts power should block temperature exceed a programmed cut-off point. Dual LED displays provide actual and setpoint temperature values in °C/°F format. Communications software (RS232, etc.), ramp-to-set and other enhanced features are available as extra cost options. Contact your Koehler representative for information.

A bank of twelve flowmeters on a movable stand regulates oxygen flow at 1 ±0.1L/h to each oil sample per IP specifications. Includes soap bubble flowmeter for checking oxygen flow rate.

Specifications
- Conforms to the specifications of:
 - IP 48, IP 280, IP 306, IP 307, IP 335
- Testing Capacity: Twelve samples
- Temperature Range: 80 to 200°C
- Temperature Uniformity: ±0.2°C
- Air Flow Control:
 - Standard Model: 1L/h to each sample
 - IP 48 Model: 15L/h to each sample
- Electrical Requirements:
 - 115V 50/60Hz, Single Phase, 12.1A
 - 220-240V 50/60Hz, Single Phase, 6.3A

Included Accessories
- Soap Bubble Flowmeter

Dimensions
- Bath: dia.xh.in.(cm) 17x22 (43.2x55.9)
- Flowmeter Stand: lwxwxh.in.(cm) 24x8x30/1 (61x20.3x76.8)
- Net Weight: 186 lbs (84.4kg)

For NIST traceable certified thermometers, please refer to the ASTM Thermometers sections on pages 184 through 191.

A liquid bath version of this equipment to perform the proposed ASTM test for High Temperature Stability of Distillate Fuels is also available. Please contact Koehler’s Customer Service for additional information.
Test Method
The L-60-1 Performance Test determines the deterioration of gear lubricants under severe thermal oxidation conditions. The sample lubricant is tested for 50 hours in a standardized gear box operating under a predetermined load. An elevated temperature and controlled air flow are maintained throughout the test and a copper catalyst is employed to accelerate the breakdown. At the end of the test period, various lubricant properties are determined by standard testing methods, and the weight loss of the catalyst is measured. The deposits that are formed on the gear box surfaces and the catalyst are examined and reported.

L-60-1 Performance Test Apparatus
- Conforms to ASTM D5704 and STP512A L-60-1 Performance Test specifications. Performs the L-60-1 Thermal Oxidation Stability performance test for API GL-5 gear lubricant service. Consists of a standardized gear box assembly with motor drive system and digital indicating controls for all test functions.

Gear Case and Drive System
Two spur gears and a test bearing are operated inside a machined stainless steel case with removable window. The drive gear shaft is coupled to a heavy duty ball bearing motor loaded by a 45 ampere alternator. The standard L-60-1 test gear loading value of 128 watts generator output is precisely maintained by a digitally indicated load bank. All gear box components are easily accessible for cleaning.

Temperature Control
An insulated heating case with high volume blower encloses the gear box. Sample oil temperature is maintained at 325°F ± 1°F (162.8 ± 0.6°C) by a digital indicating controller with PT-RTD sensor. A built-in microprocessor based recorder produces a test oil temperature chart for reporting purposes. Overtemperature protection is provided by a separate PT-RTD-sensed controller.

Air Flow Control
A high accuracy mass flow controller with digital indication maintains air flow to the gear box at a constant 1.1L/h. The self correcting controller maintains the setpoint flow rate regardless of fluctuations in air input pressure or temperature. Test cabinet and control cabinet are finished in chemical resistant polyurethane enamel. Test cabinet has a cover for access to the gear box and a removable drive motor cover.

Specifications
Conforms to the specifications of:
ASTM D5074; STP512A L-60-1 Performance Test (formerly CRC L-60 Test); FTM 791-2504

Controls and Monitors:
- Sample Oil Temperature: °C/°F, digital setpoint and display, user adjustable
- Overtemperature Limit Control: °F, user acceptable
- Heating Chamber Air Temperature: °C/°F
- Air Flow: L/h, digital setpoint and display, user adjustable
- Test Gear Load: Volts DC, Amps DC, digital display, user adjustable
- Sample Oil Temperature Recorder: Programmable microprocessor based strip chart recorder with digital display, °C/°F
- Drive Motor: 1725rpm thermally protected ball bearing type
- Alternator: 45 ampere output

Electrical Requirements:
- 220-240V 60Hz, Single Phase, 15A
- 220-240V 50Hz. Single Phase, 15A

Dimensions
- Test Cabinet: 24x24x14½ (61x61x37)
- Control Cabinet: 23½x23½x17½ (60x60x44)
- Net Weight: 330 lbs (149.7kg)

Shipping Information
- Shipping Weight: 498 Lbs (225.9kg)
- Dimensions: 29.2 Cu. ft.
Rust Preventing Characteristics of Inhibited
Mineral Oil in the Presence of Water
(Standard and Horizontal Disc Methods)

Test Method
Determines a lubricant's ability to prevent rusting of metal surfaces. Suitable for steam turbine oils, gear oils, hydraulic oils and other types of inhibited mineral oils. A steel test specimen is immersed in a heated mixture of sample oil and water which is stirred continuously during the test. After the test period the specimen is examined for rusting. The standard (ASTM D665) method uses a vertical specimen; the ‘horizontal disc method’ (ASTM D3603) uses both horizontal and vertical test surfaces.

Rust Preventing Characteristics Oil Bath
- Conforms to ASTM D665, D3603 and NACE TM-01-72* specifications
- Accommodates six sample beakers
- Microprocessor programmable high accuracy temperature control
- Constant temperature bath with stirrers for rust preventing characteristics tests. Stirs sample-water mixtures at 1000rpm and controls temperature with ±0.5°C (±1°F) stability. Immerses test beakers at the proper depth per ASTM specifications.
- Microprocessor PID control provides quick temperature stabilization without overshoot, and the bath is protected by an overtemperature control circuit that interrupts power should bath temperature exceed a programmed cut-off point. Dual LED displays provide actual and setpoint temperature values in °C/°F format. Communications software (RS232, etc.), ramp-to-set and other enhanced features are available as extra cost options. Contact your Koehler representative for information.
- Stainless steel stirrer paddles are driven by a ball bearing type motor through an improved pulley drive-roller bearing arrangement. Paddles can be raised and lowered for placement of sample beakers in the bath. Includes test specimens, holders and beaker covers for ASTM D665 or D3603 testing (see specifications and ordering information). Stainless steel bath includes perforated support shelf for beakers and two-position cover plate that adjusts for either ASTM D665 or D3603 testing. Long-lasting polyester drive belt improves reliability. Drive train components are protected by a removable steel guard. All exterior surfaces have stainless steel or chemical resistant polyurethane enamel finishes.

Specifications
Conforms to the specifications of:
- ASTM D665, D3603, D6158; NACE TM-01-72*; IP 135; ISO 7120;
- DIN 51355**, DIN 51585; FTM 791-4011, 791-5315**; NF T 60-151
- Testing Capacity: Six (6) 400mL sample beakers
- Maximum Temperature: 104°C (220°F)
- Temperature Control Stability: ±0.5°C (±1°F)
- Drive Motor: 1/12hp induction motor
- Bath Medium: 11 gal (41.6L) white technical oil

Electrical Requirements:
- 115V 60Hz, Single Phase, 13.0A
- 220-240V 50 or 60Hz, Single Phase, 6.8A

Included Accessories
- ASTM D665 Models (K30160, K30165, K30166)
 - Steel Test Specimens (6)
 - Type 2 Plastic Specimen Holders (6)
 - Plastic Beaker Covers (6)
- ASTM D3603 Models (K30161, K30167, K30168)
 - Horizontal Disc Test Assembly (6) consisting of:
 - plastic beaker cover
 - horizontal test specimen
 - vertical test specimen
 - fluorocarbon washer
 - plastic cap
 - stainless steel support rods and hardware

Dimensions
- lxwxh,in.(cm) 32⅜x14¼x27 (83x36x69)
- Net Weight: 79 lbs (35.8kg)

Shipping Information
- Shipping Weight: 150 lbs (68kg)
- Dimensions: 16.2 Cu. ft.

Ordering Information
Catalog No.
Rust Preventing Characteristics Oil Bath
For ASTM D665
- K30160 Rust Preventing Characteristics
 Oil Bath, 115V 60Hz
- K30165 Rust Preventing Characteristics
 Oil Bath, 220-240V 50Hz
- K30166 Rust Preventing Characteristics
 Oil Bath, 220-240V 60Hz

For ASTM D3603
- K30161 Rust Preventing Characteristics
 Oil Bath, 115V 60Hz
- K30167 Rust Preventing Characteristics
 Oil Bath, 220-240V 50Hz
- K30168 Rust Preventing Characteristics
 Oil Bath, 220-240V 60Hz

*To order this equipment for the NACE TM-01-72 test please turn to page 98.
Accessories

<table>
<thead>
<tr>
<th>Catalog No.</th>
<th>Order Qty</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>332-002-006</td>
<td>6</td>
<td>Test Beaker, 400mL for ASTM D665 & D3603</td>
</tr>
<tr>
<td>250-000-09F</td>
<td>7</td>
<td>ASTM 9F Thermometer Range: 20 to 230°F</td>
</tr>
<tr>
<td>250-000-09C</td>
<td>1</td>
<td>ASTM 9C Thermometer Range: –5 to +110°C</td>
</tr>
<tr>
<td>K30130</td>
<td>1</td>
<td>Chuck for polishing test specimens Includes locknut and shaft for mounting on accessory drive motor.</td>
</tr>
<tr>
<td>K30150</td>
<td>1</td>
<td>Drive Motor Drives K30130 Chuck. Mounted on base. 115V 50/60Hz</td>
</tr>
<tr>
<td>K30180</td>
<td>1</td>
<td>Drive Motor Similar to K30150 but for operation on 220-240V 50Hz</td>
</tr>
<tr>
<td>380-150-002</td>
<td>1</td>
<td>Aluminum Oxide Cloth, 150-grit for preliminary grinding of test specimens Pack of 50</td>
</tr>
<tr>
<td>380-240-002</td>
<td>1</td>
<td>Aluminum Oxide Cloth, 240-grit for final polishing of test specimens Pack of 50</td>
</tr>
<tr>
<td>K30140</td>
<td>1</td>
<td>Auxiliary Stirrer Blade - Attaches to stirrer shaft - for testing heavier than water samples - ASTM D665. Procedure C.</td>
</tr>
</tbody>
</table>

Test Specimens

<table>
<thead>
<tr>
<th>Catalog No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K30110</td>
<td>Steel Test Specimen for ASTM D665 Machined to ASTM specifications. Without Holder</td>
</tr>
<tr>
<td>K30100</td>
<td>Test Specimen with Type 2 Plastic Holder for ASTM D665</td>
</tr>
<tr>
<td>K30119</td>
<td>Test Specimen with Type 1 Plastic Holder for ASTM D665</td>
</tr>
<tr>
<td>K30101</td>
<td>Test Specimen with Type 2 PTFE Holder</td>
</tr>
<tr>
<td>K30810</td>
<td>Horizontal Test Specimen for ASTM D3603</td>
</tr>
<tr>
<td>K30820</td>
<td>Vertical Test Specimen for ASTM D3603</td>
</tr>
<tr>
<td>K30800</td>
<td>Horizontal Disc Rust Test Assembly for ASTM D3603. Includes polycarbonate beaker cover, two stainless steel support rods, disc carrier and one each horizontal and vertical test specimens.</td>
</tr>
</tbody>
</table>

For NIST traceable certified thermometers, please refer to the ASTM Thermometers sections on pages 184 through 191.
Corrosion of Lead by Lubricating Oils

Test Method
Measures the corrosiveness of lubricating oils to lead in the presence of a copper catalyst. Lead and copper test panels are rotated in the test lubricant under specified test conditions, and the degree of corrosion is determined by the change in weight of the lead panel.

Lead Corrosion Test Apparatus
• Conforms to FTM 791-5321 specifications
• Six-sample capacity
• Microprocessor programmable high accuracy temperature control

Constant temperature apparatus rotates copper and lead test panels in lubricant samples to determine corrosiveness to lead per FTM specifications. Panels are rotated at 600rpm in samples maintained at 163°C (325°F) and aerated at 0.94L/min. (2.0 Cu. ft./hr.).

Test panel shafts ride on ball bearing spindles driven by a ¼ hp motor. A counterbalanced support bar positions the drive shaft for testing or for mounting and removal of test panels. When the support bar is raised, a safety microswitch automatically stops the drive motor to prevent splashing of hot oil.

Fully insulated bath features double-wall stainless steel construction, with a built-in support rack to suspend test cells vertically at the proper depth. Microprocessor PID control provides quick temperature stabilization without overshoot, and the bath is protected by an overtemperature control circuit that interrupts power should bath temperature exceed a programmed cut-off point. Dual LED displays provide actual and setpoint temperature values in °C/°F format. Communications software (RS232, etc.), ramp-to-set and other enhanced features are available as extra cost options. Contact your Koehler representative for information.

Digital Flowmeter option is available for this unit.

Ordering Information

<table>
<thead>
<tr>
<th>Catalog No.</th>
<th>Description</th>
<th>Order Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>K29900</td>
<td>Lead Corrosion Apparatus, 220-240V 60Hz</td>
<td>1</td>
</tr>
<tr>
<td>K29990</td>
<td>Lead Corrosion Apparatus, 220-240V 50Hz</td>
<td>1</td>
</tr>
</tbody>
</table>

Included Accessories
Copper Test Panels (6)
Lead Test Panels (6)
Mounting Hardware for Panels

Specifications
Conforms to the specifications of:
FTM 791-5321
Testing Capacity: 6 lubricant samples
Maximum Temperature: 199°C (390°F)
Temperature Control Stability: ±0.05°C (±0.1°F)
Air Flow Control: 0.94±0.047L/min.
(2±0.1 Cu. ft./hr) six (6) flowmeters mounted on a common manifold
Electrical Requirements:
220-240V 60Hz, Single Phase, 14.5A
220-240V 50Hz, Single Phase, 14.5A

Shipping Information
Shipping Weight: 330 lbs (150kg)
Dimensions: 33.5 Cu. ft.

Stability of Lubricating Oils (Work Factor)

Test Method
Determines the stability of a lubricating oil when subjected to an endurance test in a journal bearing operated under prescribed conditions. After a 100 hour test period, the ‘work factor’ is computed from measured changes in viscosity, neutralization number and carbon residue.

Navy Work Factor Machine
• Conforms to FTM 791-3451 specifications

Complete apparatus for the ‘Navy Work Factor’ stability test for lubricating oils. Consists of bearing and journal, bearing loading device with calibrated springs, 5hp drive system with variable speed control, oil circulation system, and full instrumentation. Operates the journal bearing at 2000 or 3000rpm under a specified load. Oil system pressure is maintained at a constant 15 psig (103 gauge kPa) throughout the test. Includes digital displays of oil pressure and temperature and a built-in strip chart recorder for hard copy test reports.

Ordering Information

<table>
<thead>
<tr>
<th>Catalog No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K30000</td>
<td>Navy Work Factor Machine, 220-240V 50Hz when ordering</td>
</tr>
<tr>
<td>K30010</td>
<td>Replacement Test Bearing</td>
</tr>
</tbody>
</table>

Specifications
Conforms to the specifications of: FTM 791-3451.4
Electrical Requirements: 220-240V, 3 Phase, 50/60Hz, 20A
Dimensions bwxh, in. (cm)
50x40x60 (127x102x152)
Net Weight: 1378 lbs (625.1kg)
Shipping Information
Shipping Weight: 1660 lbs (753kg)
Dimensions: 110 Cu. ft.
Copper Corrosion from Petroleum Products

Test Method
The Copper Strip Tarnish Test assesses the relative degree of corrosivity of petroleum products, including lubricating oils. A polished copper strip is immersed in 30mL of sample at elevated temperature. After the test period, the strip is examined for evidence of corrosion and a classification number from 1-4 is assigned based on a comparison with the ASTM Copper Strip Corrosion Standards.

Copper Strip Tarnish Test Apparatus
• Conforms to ASTM D130, D6074, D6158 and related specifications
The complete apparatus for the Copper Strip Tarnish Test for lubricating oils consists of:
 - Test Tube Bath
 - Copper Strips
 - Test Tubes
 - ASTM Copper Strip Corrosion Test Standard
 - Surface Preparation Accessories

Test Tube Bath
• Accommodates 16 test tubes
• Temperature range to 190°C (374°F)
• Microprocessor temperature control with digital display and overtemperature protection.
Constant temperature bath immerses 16 test tubes for copper strip tarnish tests of products not requiring a test bomb. Microprocessor temperature control has °C/°F switchable digital setpoint and display. Operator and equipment are protected by an overtemperature control circuit which automatically interrupts power to the unit should bath temperature exceed a programmed cut-off point. Welded stainless steel double-wall construction with built-in support rack. Fully insulated. For complete specifications, please refer to page 90.

Bearing Compatibility of Turbine Oils

Test Method
Evaluates the in-service stability of turbine lubricants by running a sample-lubricated babbit journal bearing for an extended period at high speed under controlled conditions of load, lubricant flow and temperature. The change in various properties (viscosity, carbon residue, acidity) is measured at the end of the endurance test and the bearing is cleaned and examined for evidence of deposits, corrosion and other changes.

Bearing Compatibility Tester
• Conforms to FTM 791-3452 specifications
• Digital-indicating controls and built-in temperature recorder
Tests the bearing compatibility (lacquering, deposits, corrosion) and stability of turbine lubricants when subjected to an endurance test. Consists of bearing housing assembly with test bearing and support bearings, hydraulic loading device, oil circulation system with thermostatic and hydrostatic control, and powerful 5hp variable speed drive system. Digital LCD controls monitor oil pressure, temperature and spindle rpm, and a built-in strip chart recorder plots oil temperature at three different points—at the bearing housing, in-line, and in the reservoir. Equipped with overtemperature and low pressure cut-off switches and a cartridge oil filter for convenient ‘flush run’ operation. All components are mounted in a sturdy angle iron frame. A removable steel guard protects drive train components.

Specifications
Conforms to the specifications of: FTM 791-3452
 - Journal Drive Motor: 5hp variable speed, with digital 0-3500rpm control.
 - Fan cooled with thermal overload protection.
 - Lubricant Flow: 3.8L/min. gear pump recirculating 1.9-23L/min.
 - Digital oil pressure circulation.
 - Temperature Control: Sump temperature (0-500°F) with digital indication and recording of temperature at bearing housing, sump and in-line.
 - Bearing Load: Hydraulic loading device maintaining 1520 kPa (220 psig) on the loading bearing.
 - Electrical Requirements:
 - 200-240V 50/60Hz, 3-Phase, 20A
 - 380V 50/60Hz, 3-Phase, 12A
 - 440V 50/60Hz, 3-Phase, 10A

Ordering Information

Catalog No.	Order Qty
K29800 | Bearing Compatibility Tester
K29801 | Test Bearing

For NIST traceable certified thermometers, please refer to the ASTM Thermometers sections on pages 184 through 191.
Cloud Point and Pour Point of Petroleum Products

Test Method
Cloud point and pour point are indicators of the lowest temperature of utility for petroleum products. The sample is periodically examined while it is being cooled in the cloud and pour point apparatus. The highest temperature at which haziness is observed (cloud point), or the lowest temperature at which movement of the oil is observed (pour point), is reported as the test result.

Cloud and Pour Point Test Equipment
• Conforms to ASTM D97, D2500 and related specifications
• Compact four-place portable chamber
• Mechanically refrigerated models with factory preset cold baths

Cloud and Pour Point Chamber—Immerses four copper test jackets in suitable freezing mixtures at the required depth per ASTM specifications. Available with inlet and outlet connections for circulating refrigerated coolant from an external source. Consists of steel exterior housing with polyurethane enamel finish and all copper interior for corrosion resistance. Removable composition top plate and ¼” (13mm) cork insulation around interior aid in cold retention. Supplied with copper jackets, gaskets, disks, and thermometer holders for test jars and cooling bath. Order test jars and thermometers separately.

Mechanically Refrigerated Baths—Bench-model and floor-model test units with multiple four-jacket mechanically refrigerated baths, each factory preset at a different temperature for convenient cloud and pour point testing. Bench model has three baths, set at +30, 0, and −30°F (−1, −18 and −35°C); floor model has four baths, set at +30, 0, −30 and −60°F (−1, −18 −35 and −51°C). Each bath has a phenolic top plate with ports for thermometer and four copper test jackets. Synthetic sponge covers over each top plate and gasketed hoods over each bath prevent excessive ice accumulation around the test jackets. Cascade hermetic refrigeration system provides reliable long term service. Bath interior is made of stainless steel, cabinet is constructed of polyester-epoxy finished steel housing. Floor model rides on swivel castors. Supplied with test jackets, gaskets, disks, and thermometer holders for test jars and cooling baths.

Specifications
Conforms to the specifications of:
ASTM D97, D2500, D5853, D6074, D6158; IP 15, 219;
ISO 3015, 3016; DIN 51597; FTM 791-201; NF T 60-105

Electrical Requirements:
Model K46100 Refrigerated Bench Model:
115V 60Hz, Single Phase, 12.2A
220-240V 50/60Hz, Single Phase, 6.9A
Model K46300 Refrigerated Floor Model:
115V 60Hz, Single Phase, 17.7A
220-240V 50/60Hz, Single Phase, 9.7A

Dimensions
K46000: dia.xh,in.(cm)
10x12 (27x30)
K46100: lxwxh,in.(cm)
30x28x35 (76x71x89)
K46300: lxwxh,in.(cm)
44x38x4 (112x97x115)

Net Weight:
K46000: 14lbs (6.3 kg)
K46100: 340lbs (155 kg)
K46300: 392lbs (178 kg)

Shipping Information
Shipping Weight:
K46000: 18 lbs (8.2 kg)
K46100: 550 lbs (250 kg)
K46300: 605 lbs (275 kg)

Dimensions:
K46000: 2.6 Cu. ft.
K46100: 14.1 Cu. ft.
K46300: 60.6 Cu. ft.
Automated Cloud Point and Pour Point System

- Conforms to ASTM D97, D2500 and related specifications
- Direct cooling system eliminates the need for solvent cooling baths
- One-stage cooling system provides temperatures as low as –35°C and a two-stage cooling system down to –80°C
- Single start/stop push button makes system simple to use
- Minimal installation required to set-up software and instrumentation

Cloud Point Detection—The cloud point detection system provides automated sample testing with the accuracy and repeatability in accordance with ASTM D2500 and related international test methods. The sophisticated dynamic measurement system emits a light pulse every 1°C from a coaxial fiber optic cable positioned above the test sample. The light pulse is then reflected off the silvered-bottom test jar to an optical sensor. The advanced software package analyzes the response of the light pulse. The initial appearance of crystalization is monitored by light scattering,signifying the cloud point of the sample. All clear and transparent oils are readily measured by the detection system, regardless of sample color.

Pour Point Detection—The pour point detection system provides automated testing with the accuracy and repeatability in accordance with ASTM D97 and related international test methods. The automated operation includes the removing the sample from the cooling jacket at 3°C intervals and tilting it to a 90° angle as prescribed by the test method until no flow is observed. Contact of the cold sample with the two Pt-100 temperature probes positioned just above the surface liquid level when the test jar is tilted identifies sample flow. The test jar is automatically returned to the cooling jacket and sampled again until no flow is detected for 5 seconds. The pour point result is then reported at 3°C higher than the temperature at which the sample ceased to flow in accordance with the test method.

Advanced Software Package—The Windows®-based software package can control either a stand-alone system or provides multiple analyzer networking with a single network control station. All analytical parameters are graphed and displayed in real-time as well as recorded in Microsoft® Excel file format. The software monitors the operation and performance of all the analyzer components for proper data measurement, including the solenoid valves, cooling system, other moving parts, as well as the Pt-100 temperature probes and the pressure sensors. The calibration curves for each probes and sensors are displayed individually and saved to the hard disk with date and time of test. Please refer to page 97 or 101 for a picture of the software screen.

Cooling System—For various user applications, the automated cloud point and pour point systems are available with either one-stage or two-stage cooling for temperatures as low as –35°C or two-stage cooling for temperatures as low as –80°C. The direct cooling system requires no solvent cooling bath and thus eliminates operator exposure to solvents used in standard cooling systems. The direct system is capable of rapid cooling, approaching –80°C bath temperatures in approximately 15 minutes, and utilizes less electricity than in standard cooling systems. The rapid cooling feature combined with a consistent cooling profile system provides repeatable results with high test reproducibility.

Multiple Configuration System—These automated sample cooling and physical property measurement systems can be configured with up to six test positions with one of five possible test heads at each position: cloud point, pour point, cloud & pour point, freezing point, and cold filter plugging point. Standard and customized multiple configuration systems are readily available. Please refer to pages 97 and 101 about freezing point and cold filter plugging point product descriptions. Please inquire with Koehler Customer Service about product specifications and ordering information.

Test Method

The majority of high-voltage transformers, cables, switchgears, transducers, capacitors, and rectifiers use insulating oils for insulating electrically live parts and to carry off thermal energy. The quality of the insulating oil must be checked at regular intervals to ensure a long equipment service life. The most important requirement of an insulating oil is a high dielectric strength. Determination of the dielectric breakdown voltage of insulating oils provides an early detection method for any reduction in the insulating properties.

High Voltage Insulating Oil Tester

- Conforms to ASTM D877, D1816 and related test specifications
- Suitable for all insulating fluids
- Fast cut-out of the high voltage immediately after oil dielectric breakdown
- Overtemperature protection system with power cut-out

K16175 (75KV) Specifications

- Fully Automatic
- ASTM D877, D1816, BS EN 60156; CEI EN 60156; IEC 156; VDE 0370 Pt. 5
- Voltage Indication: Digital 0-75kV; ±1kV
- Test Voltage: 0-75kVrms; symmetric
- Voltage Increase: 0.5; 1; 2; 3; 5 kV/Sec
- Switch-off Time on BD: < 1ms
- Switch-off Current: 4mA
- Real Breakdown Monitoring (RBM): detects actual flash over
- Relative Humidity: <90%
- Ambient Temperature: Operating 32°F to 113°F (0°C to 45°C)
- Storage -4°F to 113°F (-20°C to 55°C)
- Power Consumption: Max. 120VA
- Power Supply: 100-240V/50-60Hz
- Weight: 56.4lbs (25.6 kg) Basic unit
- Dimensions: 40.5x34.5x27.5cm
- Integrated Printer: optional
- Interface: RS232
- Additional Test Cycles: 5 (programmable)
- Options: Windows PC Software (optional)

Ordering Information

<table>
<thead>
<tr>
<th>Catalog No.</th>
<th>Order Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>K16175-1</td>
<td>1</td>
</tr>
<tr>
<td>K16175-2</td>
<td>1</td>
</tr>
<tr>
<td>K16175-3</td>
<td>1</td>
</tr>
<tr>
<td>K16175-4</td>
<td>1</td>
</tr>
<tr>
<td>K16175-5</td>
<td>1</td>
</tr>
<tr>
<td>K16175-6</td>
<td>1</td>
</tr>
<tr>
<td>K16175-7</td>
<td>1</td>
</tr>
<tr>
<td>K16175-8</td>
<td>1</td>
</tr>
<tr>
<td>K16175-9</td>
<td>1</td>
</tr>
<tr>
<td>K16175-10</td>
<td>1</td>
</tr>
<tr>
<td>K16175-11</td>
<td>1</td>
</tr>
<tr>
<td>K16175-12</td>
<td>1</td>
</tr>
<tr>
<td>K16175-13</td>
<td>1</td>
</tr>
<tr>
<td>K16175-14</td>
<td>1</td>
</tr>
</tbody>
</table>

K16176 (100KV) Specifications

- Fully Automatic
- ASTM D877, D1816, BS EN 60156; CEI EN 60156; IEC 156; VDE 0370 Pt. 5
- Voltage Indication: Digital 0-100kV; ±1kV
- Test Voltage: 0-100kVrms; symmetric
- Voltage Increase: 0.5; 1; 2; 3; 5 kV/Sec
- Switch-off Time on BD: < 1ms
- Switch-off Current: 4mA
- Real Breakdown Monitoring (RBM): detects insulating liquids with specific resistance too low
- Relative Humidity: <90% not condensing
- Ambient Temperature: Operating 32°F to 113°F (0°C to 45°C)
- Storage -4°F to 131°F (-20°C to 55°C)
- Power Consumption: Max. 200VA
- Power Supply: 100-240V/50-60Hz
- Weight: 83lbs (37.6 kg)
- Dimensions: 17¾”x18¼”x19¾” (45x46x50cm)
- Integrated Printer: 24 digit dot matrix with ink ribbon, paper width 2¼”
- Interface: RS232
- Additional Test Cycles: 5 (programmable)
- Options: Windows PC Software (optional)
Coking Tendency of Oil

Test Method
Determines the tendency of finished oils to form coke when in contact with surfaces at elevated temperatures for short periods. A sample of oil is mechanically splashed against an aluminum test panel at elevated temperature. After a specified test period, the amount of coke deposited on the panel is determined by weight.

Panel Coking Test Apparatus
- Conforms to FTM 791-3462 specifications
- Suitable as a screening test prior to performing engine tests

Digitally controlled panel coking apparatus for finished lubricating oils, consisting of mechanical splasher, splash chamber and sample oil reservoir. Test panel temperature and oil sump temperature are individually controlled by separate heaters with digital-indicating controllers. Mechanical splasher has a variable speed 0-1800rpm drive motor with digital indicating control. A high accuracy variable area flowmeter permits introduction of a corrosive acidic atmosphere to increase the severity of the test. Equipped with a digital countdown timer. Hinged safety cover has a port for fume removal and a safety interlock switch that interrupts power to the drive motor when the cover is lifted.

Specifications
Conforms to the specifications of:
FTM 791-3462
Maximum Temperature:
Test Panel: 400°C (752°F)
Sample Oil: 210°C (410°F)
Temperature Control: Separate controls for test panel and oil temperature, with digital °C/°F digital setpoint and display
Splashing Rate: 0-1800rpm, with digital display
Timer: 0-99.9 hr variable countdown
Flowmeter Range: 0.2-1.0L/hr
Oil Reservoir Capacity: 0.35 liter
Electrical Requirements:
115V 50/60Hz, 8A
220-240V 50/60Hz, 5A

Dimensions
Test Unit: 32x18x21 (81x46x53)
Control Cabinet: 18x12x18 (46x30x46)
Net Weight:
Test Unit: 50 lbs (22.7kg)
Control Cabinet: 25 lbs (11.3kg)

Shipping Information
Shipping Weight: 135 lbs (61.2kg)
Dimensions: 26.7 Cu. ft.

Accessories
K50101 Aluminum Test Panel
K50102 Stainless Steel Test Panel (Type 321)

Ordering Information
<table>
<thead>
<tr>
<th>Catalog No.</th>
<th>Description</th>
<th>Order Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>K50100</td>
<td>Panel Coking Test Apparatus, 115V 50/60Hz</td>
<td></td>
</tr>
<tr>
<td>K50110</td>
<td>Panel Coking Test Apparatus, with cyclic timer 115V 50/60Hz</td>
<td></td>
</tr>
<tr>
<td>K50119</td>
<td>Panel Coking Test Apparatus, with cyclic timer 220-240V 50/60Hz</td>
<td></td>
</tr>
<tr>
<td>K50190</td>
<td>Panel Coking Test Apparatus, 220-240V 50/60Hz</td>
<td></td>
</tr>
</tbody>
</table>

Software compatible, inquire with Koehler Customer Service.

Digital Flowmeter option is available for this unit.
Evaporation Loss of Lubricating Oils (Noack Test)

Test Method
A quantity of 65g of a lubricant is placed in an evaporative crucible and heated to 250°C for 60 minutes. The evaporation loss tendencies of the lubricant are determined by passing a constant air stream over the heated sample by means of a vacuum pump.

Noack Evaporation Loss Analyzer
- Conforms to ASTM D5800, DIN 51581 specifications
- Non-Woods Metal or Woods Metal heating bath option

The Koehler Noack Evaporation Loss Analyzer tests the evaporation loss tendencies of lubricating oils at temperatures of up to 350°C, available with either a Non-Woods Metal or a Woods Metal heating bath.

Non-Woods Metal Option
Fully insulated aluminum block heating unit has a microprocessor-based digital temperature and pressure controller. A digital stopwatch is also included for recording test and cooling times. The test is started automatically after insertion of the crucible and displays both temperature and pressure curves in real-time throughout the test. The stainless steel evaporation crucible inserts into the aluminum block oven and includes a plated brass lid assembly with threaded support ring, hardened steel air nozzles, and extraction tube with threaded and sealed connection. Order required accessories separately.

Woods Metal Option
Fully insulated aluminum block heating unit has a microprocessor-based digital temperature controller and stopwatch for recording test and cooling times. The evaporation crucible is identical as listed above. Aluminum block accepts certified thermometers for temperature monitoring. Order required accessories, vacuum pump, and automated pressure control unit separately.

Specifications
Conforms to the specifications of:
ASTM D5800; DIN 51581
Capacity: 1 sample
Temperature Range: 150 to 350°C
Temperature Accuracy: ±0.1°C
Electrical Requirements:
115V 60Hz, 12.0A
230V 50Hz, 5.8A

Dimensions lxwxh, in.(cm)
Non-Woods Metal Noack Tester with Stand and Glassware Set:
23/x14.5/x26.5 (59x35x68)
Net Weight: 59 lbs (26.7kg)

Woods Metal Noack Tester:
18x14.5/x14.5 (4x38x37)
Glassware Set and Vacuum Regulator:
23/x14.5/x26.5 (59x35x68)
Net Weight: 62 lbs (28.4kg)

Shipping Information
Shipping Weight:
Non-Woods Metal Unit:
124 lbs (56kg)
Woods Metal Unit:
62 lbs (28.4kg)
Dimensions:
Non-Woods Metal Unit: 5.0 Cu. ft.
Woods Metal Unit: 7.3 Cu. ft.
Additional Accessories

Additional equipment, materials and/or reagents are required to perform some of the test procedures in the preceding pages. Please refer to the applicable test method for further information, or contact Koehler for assistance.

Foaming Characteristics of Lubricating OilsPages 108-110
ASTM D892; IP 146; DIN 51566; FTM 791-3211, 791-3213
Air Supply Toluene
Acetone Isopropanol
Desiccant Cotton

Water Separability of Petroleum Oils and Synthetic FluidsPage 111
ASTM D1401; ISO 6614; DIN 51599; FTM 791-3201
Precipitation Naphtha Acetone Distilled Water Cotton
Nochromix

Demulsibility Characteristics of Lubricating OilsPage 112
ASTM D2711 and DIN 51353
Centrifuge Centrifuge Tubes
Distilled Water 1,1,1-Trichloroethane

Oxidation Stability of Steam Turbine Oils and Inhibited Mineral Insulating Oils by Rotating BombPages 114-118
ASTM D2112, D2272; IP 229
Liquid Detergent Oxygen
Potassium Hydroxide Petroleum Spirit
Acetone Hydrochloric Acid
Chloroform Isopropanol

Oxidation Stability of Gasoline Automotive Engine Oils by Thin-Film Oxidation Uptake (TFOUT)Pages 114-118
ASTM D4742
Liquid Detergent Acetone
n-Hexane Oxygen
Potassium Hydroxide Air Supply
Isopropanol Water

Oxidation Stability of Distillate Fuel Oil (Accelerated Method)Pages 119-122
ASTM D2274
Drying Oven Filter Assembly
Membrane Filters Beaker, 200mL
Hot Plate Isooctane
Oxygen Water Supply
Acetone Methanol
Toluene

Oxidation Characteristics of Inhibited Mineral OilsPages 119-122
ASTM D943; DIN 51587
Desiccant Bags Acetone
Abrasive Cloth Glass Syringes, 10 and 50mL
Distilled Water Flexible Tubing
Detergent n-Heptane
Hydrochloric Acid Isopropanol
Oxygen Nitrogen
Gloves

Sludging Tendencies of Inhibited Mineral OilsPages 119-122
ASTM D4310
Syringe, 50mL Flexible Tubing
Acetone Detergent
n-Heptane Hydrochloric Acid
Chromic Acid Oxygen
Filter Holder Membrane Filters
Separatory Funnel Weighing Bottle, 60mL
Forceps Drying Oven
Nitrogen Vacuum Source
Desiccant Bags Flushing Tube
Isopropanol Rubber Policeman

Oxidation Characteristics of Extreme Pressure Lubricating OilsPages 119-122
ASTM D2893
Drying Tower
Chromic Acid or equivalent detergent cleaning solution
Air Supply

Oxidation Stability of Mineral Insulating OilsPage 123
ASTM D2440
n-Heptane Oxygen
Potassium Hydroxide Solution Toluene
Isopropyl Alcohol Chloroform
Acid Free Filter Paper p-Naphtolbenzen Indicator

Oxidation Stability of Inhibited Mineral Turbine OilsPages 126
IP 280
Oxygen Alkali Blue Indicator
Phenolphthalein Heptane
Hydrochloric Acid Potassium Hydroxide
Toluene Dichloromethane
Ethanol Sulfuric Acid
Membrane Filters Evaporating Dish
Burette Air Oven
Filtration Apparatus Conical Flask, 500mL

Oxidation Stability of Straight Mineral OilPage 126
IP 306
Filtering Crucibles Porcelain Crucibles
Burette Oxygen
Alkali Blue Indicator Phenolphthalein
n-Heptane Hydrochloric Acid
Potassium Hydroxide Toluene
Chloroform Ethanol
Sulfuric Acid Acetone
Membrane Filters Forceps
Petri Dishes Filtration Apparatus
Oven

Koehler INSTRUMENT COMPANY, INC.

137
Oxidation Stability of Mineral Insulating Oil Page 126

IP307
Filtering Crucibles Porcelain Crucibles
Burette Oxygen
Alkali Blue Indicator Phenolphthalein
Heptane Hydrochloric Acid
Potassium Hydroxide Toluene
Chloroform Ethanol
Sulfuric Acid Acetone
Isopropanol Membrane Filters
Forceps Petri Dishes
Filtration Apparatus Oven

Oxidation Stability of Inhibited Mineral Insulating Oils Page 126

IP 335
Porcelain Crucibles Burette
Oxygen Alkali Blue Indicator
Phenolphthalein Solution n-Heptane
Hydrochloric Acid Potassium Hydroxide
Toluene Chloroform
Ethanol Membrane Filters, 5.0 µm
Forceps Petri Dishes
Filtration Apparatus Oven

Thermal Oxidation Stability of Automotive Gear Lubricants Page 127

ASTM 5704; STP12A L-60-1 Performance Test (formerly CRC L-60 Test); FTM 791B Method 2504
Oakite 811 Pentane
Stoddard Solvent Toluene
Reference Oils Air Supply
Absorbent Cotton Tweezers
Heptane Organic Cleaning Solvent

Corrosiveness and Oxidation Stability of Hydraulic Oils, Aircraft Turbine Engine Lubricants and Other Highly Refined OilsPages 124-125

ASTM D4636; FTM 791-5307, FTM 791-5308; IHC BT-10, DIN 51394
Air Supply Cotton
Analytical Balance n-Heptane
Centrifuge and Tubes Acetone
Microscope Nitric Acid
Oven (optional) Sodium Hydroxide
Forceps Sodium Phosphate
Sodium Dichromate Sulfuric Acid
Brush Distilled Water
Nochromix

Rust Preventing Characteristics of Inhibited Mineral Oil in the Presence of Water (Standard and Horizontal Disc Methods)Pages 128-129
ASTM D665, D3603; NACE TM-01-72; IP 135; ISO 7120; DIN 51355, DIN 51585; FTM 791-4011, 791-5315
Oven Naphtha
Isooctane Synthetic Sea Water
Distilled Water Precipitation Naphtha
Petroleum Spirit 60/80

Corrosion of Lead by Lubricating Oils Page 130
FTM 791-3521.1
Air Supply Analytical Balance
Forceps Petroleum Naphtha
Acetone Steel Wool
Cotton

Bearing Compatibility of Turbine Oils Page 131
FTM 791-3452
Test Equipment for:
ASTM D445 Kinematic Viscosity (refer to Viscosity Section)
ASTM D524 Ramsbottom Carbon Residue (refer to Page 53)
ASTM D974 Total Acid Number

Copper Corrosion From Petroleum Products Page 131
ASTM D130
Filter Paper Cotton Wool
Isooctane Stainless Steel Forceps
Stoddard Solvents

Cloud Point and Pour Point of Petroleum Oils........ Pages 132-133
ASTM D97, D2500; IP 15, 219; ISO 3015, 3016; DIN 51597; FTM 791-201
Methanol Sodium Sulfate
Solid Carbon Dioxide Petroleum Naphtha
Calcium Chloride Acetone
Ethanol Sodium Chloride

Coking Tendency of Oil .. Page 135
FTM 791-3462
Emery Paper Petroleum Ether

Evaporation Loss of Lubricating Oils (Noack Test) Page 136
ASTM D5800; DIN 51581; CEC L40 A93
Balance Naphtha
Toluene

Additional Accessories (Continued)